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SIJMIMARY 

It is shown that retention volumes can be calculated in terms of the total 
material content in the chromatographic column as transported by the eluent, termed 
the “‘column capacity”_ With the aid of this retention equation, of general validity, 
the necessary link is established between Gibbs’ description of adsorption at a liquid- 
solid interface and the theory of retention in liquid-solid chromatography. Reiation- 
ships are given for the correct interpretation of retention volumes and for the chroma- 
tographic determination of adsorption isotherms of the components in a binary 
liquid mixture. 

INTRODUCTION 

In the mathematical treatment of multi-component chromatography by De 
Vault’, retention volumes are found to be the eigenvalues of a matrix, the elements of 
which are the partial derivatives of the partition isotherms with respect to the conccn- 
tration in the mobile phase_ Bay16 and Klinkenber& and Mangelsdorf3 pointed out 
very clearly that conclusions drawn from this model can be considered valid only if it 
can be shown that the matrix has real, positive eigenvaiues. At present there is no 
thermodynamic proof of general validity; a demonstration was given only for some 
special cases by Mangelsdorf” and Hellferich and Klein4. Perhaps it is because of this 
basic di&zulty that the results of this treatment were never applied to a quantitative 
evaluation ofexperiments. Further, the link was never obvious between the theory of 
adsorption from liquid mixtures and that of liquid-solid chromatography. This ques- 
tion has already been trcatcd by De Vault’ and later by Schay’, but the application of 
their theoretical results to experiment is not without dilhculties, as it is shown by 
several more recent papers*” on the determination of hold-up volumes and com- 
posite adsorption isotherms. 

In this paper we propose an interpretation of experimental data in liquid chro- 
matography- that is coherent with the theory of adsorption. Restrictions had to he 
introduced for the general validity of the conclusions; they are in relation to the lack 
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of a solution of the fundamental eigenvalue problem- Also, an experimental method 
for the determir-arion of composite isotherms in binary liquid mixtures is discussed. 

RJZTEF;TIOX IN THE CHRO%fATOGRAPHfC COLU,MN UNDER ANALYTfCAL CONDITIONS 

In the classical model of’ the chronratogt-aphic process a solute is distributed 
between two homogeneous phases of well defined boundary and extent, one of which 
is mobile and the other stationary_ The ident&ation of such phases in different types 
of chromatography is not always obvious. For example, in liquid-solid chromatogra- 
phy with a mixture as the eluent there exists in the liquid, normal to the eluent-solid 
interface_ a concentration gradient_ Experimental evidence shows that far enough 
from the interface there is liquid of homogeneous composition but no definite bound- 
ary can be established between the homogeneous portion inside the liquid and the 
certainly non-homogeneous surface phase_ In the dynamic chromatographic system 
there arises a further boundary problem, namely tha: between the mobile part of the 
eluent (supposedly of homogeneous composition) and the stationary layer near the 
surface_ A final problem is the identification of an eluent in the sense of a “carrier of 
solutes“_ Actually, in this respect there is no difference between components of the 
eiuent and those of the sample; in the column every compound is once part of the 
carrier and then part of the stationary layer. Liquid-solid chromato_mphy is a typ- 
ical example of “multi-component chromatography with interference-‘ as defined by 
HelfTerich and Klein4. It can be concluded that in these instances the classical model is 
not adequate to describe the chromatographic process because the identification of a 
homogeneous stationary phase is not possible. Obviously_ concepts intimately related 
to this model such as partition coefficient and hold-up volume also have no evident 
interpretation_ 

In the following. a lzeir approach is proposed and it wiil be shown that it is 
possible to describe the chromatographic process with the aid of a function called the 
--cohmz capacit_v” and by only supposin g that there is a homogeneous mobile phase 
(referred to by the subscript p) which has a material content greater than zero. it will 
be shown that in the general case the exact value of this material content (and of the 
corresponding volume) can be left unspeci%d. If useful or necessary it can be de- 
termintd from case to case on the basis of a model (e _g., gas-liquid chromatography) 
or a convention (e.g.? liquid-solid chromatography). 

For the dejhitiolt oj‘the coluntn capacit_v let us consider an infinite amount of a 
fluid m-component mixture (liquid or gas) of the composition -3, where the subscript f3 
refers to this bulk. The composition is designated by an nz- l-dimensional vector 
with the individual moiar fractions. _$.i, as components: 

(the composition can also be given in terms of mass fractions, jjj, or volume fractions, 
rj@_ Let us also imagine a rigid tube filled with a welI defined amount of a non-volatile 
powder absolutely insoluble in the aforementioned fluid. The nature of the powder is 
left unspecifkd. The tube closed at the ends by membranes permeable to the fluid is 
now considered as the system to be characterized. It is placed into the fluid mixture at 
temperature T and pressure P_ After equilibrium is established the fluid is completely 
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emptied from the tube and the mass, composition and nature of the fluid yield are 
determined_ This result expressed in terms of number of moIes is deemed the “molar 
capacity vector of the tube”, ii;_ One of the components of this vector is the “moiar 
component capacity”, Le., the total amount of a compound contained in the tube. At 
constant temperature and pressure these M functions depend on the composition of 
the fluid mixture: 

II,_; = IZ&g (2) 

They are equilibrium properties of the tube and as such characterize its equilibrium 
state. Equivalently, the total molar capacity 

together with the composition vector of the yield, _FK, also define the Lquiiibrium state 
of the tube. In non-trivial cases _K # _j& 

It will be now shown that if this tube is used as a cizronzuzogruphic- c-olzwzn 
where any compound admitted in the chromatographic process (including the 
sample. eluent. etc.) was included in the set of III substances then the III functions 
II,_; determine unequivocally the retention properties of the coIumn under the fol- 
lowing conditions: 

(a) The process must be considered to proceed through states of equilibrium 
(instantaneous equilibrium at any point inside the column) because the value of ?he 
column capacity refers to equilibrium_ Any other knowiedge about the retention, e-g_, 
retention mechanism, is not necessary_ 

(b) The hypothesis of the existence of a homogeneous mobile phase of non- 
zero and positive material content must be admissible and plausible. It will be iden- 
tified as part of the fluid mixture from the foregoing experiment; consequently, the 
column capacity will refer to the composition of this phase. However. the extent of 
the volume of the mobile phase need not be specified. 

So far, the model as presented has been very general_ For proper mathematical 
treatment it is necessary to specify further the chromatographic system. The i&uke~f 
ctwonuztograpilk colmn~z which will be referred to (see Fig. 1) has a uniform cross- 
section at any distance. 1, from the inlet (I = 0) to the outlet (1 = L). it is filled with a 
quasi-continuum of a porous column material with pores uniformly and microscop- 
ically distributed_ It is not necessary at this stage to specify the material and com- 
position of the column filling (solid, solid support coated with a liquid, solid with 
chemically modified surface, etc.). A fluid In-component mixture is made to flow 
through the column at constant temperature, T,. It experiences no flow resistance, 
ahd consequently the pressure in the column is uniform, PC (me?n column pressure)_ 
In this dynamic situation the composition of the mobiie phase becomes a function of 
distance along the column and time, _C&,f). The interface separating the eluent and 
the column material has a total area S. ihe mobile phase advances through the 
column with a piston flow profile. As previously noted, it has a positive volume but 
the exact value will be left unspecified_ A detector is placed at the column outlet to 
measure the composition [_Qz=L,r)] of the mobiie phase- In order to simplify the 
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description of the dynamic behaviour of the system. the usual assumptions are intro- 
duced: instantaneous equilibrium in each cross-section and no axial diffusion. The 
oriIy nove1 hypothesis to be made is that within any cross-section that part of the fluid 
mixture which has a different composition from that of the mobile phase _r,(z,t) 
remains stationary_ For such a column the column capacity is an intensive function 
if referred to unit column length. ii;,lL. 

det_ 

I 8 

L d : z 
2 L 

Fig_ I _ Scheme of the chromato_gaphic column filled with a qukcontinuum of a porous powder. 

We nou- address the usual problem encountered in elution chromatography. 
ie__ that of the rzrention wiunze. IfR_,. of a concentration signal introduced at the 
beginning of the column but in terms of the vector function 

Within any cross-section the material content can only change through material 
transport by the eluent. Therefore for compound i, the material balance in the section 
from the column inlet to distance L is given by the equation 

( [n,,(_FF (z,r))fiL : dz = 

Material content in the 
section (O-z) at time t 

= 
j Ilrzsc_i(-$ (z,o)llit:k + 

Material content in the 
section at time t = 0 

(5) 

[ ri(O,f)-r,.i tO.r)lL; (4 (O,t))] dr - i [ ri(r,z)_v,&t),‘c, (?j(z,t))] dt 
0 

Amount of compound i Amount of compound i which 
which entered at = = 0 left the section at I 

j = Lt. ____ nr, where the term @_t) represents the now-rate considered to be a 
function of I and c and z; is the mean molar volume of the mobile phase. Partial 
diEerentiation of eqn. 5 first with reference to time and then to length gives the 
differential equation of the material balance as follows: 

With s-Stable initial and boundary conditions, this set of nz partial differential equa- 
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tions determines the tlr functions in question: m - 1 composition functions. _x+ (z-r). 
for the components a. . . _. i, _. _. (nr- 1) and the nzth function. the flow-rate_ Qzt). it 
is shown in the Appendix that, by an appropriate change of variables, the system 
can be reduced to a set of 112 - 1 equations for the components of the unknown 
composition vector _Qz,t). 

Seeking a specific solution for analytical cfzronlatograplzv under isothermal and 

isocratic conditions, appropriate initial conditions are now given as follows. Prior 
to chromatography the column is equilibrated with the eluent which is an N- 
component mixture of the composition _$ with components designated by capital 
letters A , ---. J, ____ N. The superscript zero refers to the time t = 0 when the column 
is ready for injection and eluent of identical composition will enter at the inlet (z = 0) 
and leave at the outlet (z = t), suggesting that this is also the composition of the 
mobile phase throughout the column: 

-v&t =0) = constant = _$ (7) 

At the time E = 0 the composition of the incoming mixture is modified by injection of an 
infinitesimal sample. This will introduce a composition chanse in a small section of 
the column. As the signal is infinitesimal. only the case of one soiute will be treated_ as 
at infinite dilution the solutes do not interact and their retention volumes are in- 
dependent of one another (see also Appendix)_ The vector _FP = _CJz,t) is the com- 
position vector of the eluent also containing a solute_ _C,..,_ For reasons of uniformity 
and (as will be seen later) of simplicity, the molar fraction of one of the components of 
the eluent will always be considered as the dependent variable 2, = (_Y~_~_ _ _ _, A-~.,_ 
_ - -, _I- p-s- 1‘ -Q,,)- E ven by considering only infinitesimal perturbations of the com- 
position, the complete solution of the mathematical problem is only possible if the 
eluent contains not more than two components (Le., the eluent is a binary mixture)_ 
In this case the retention volume of an infinitesimal perturbation of the concentration 
vector is given by 

(8) 

where $ = rN (-$I is the mean molar volume of the eluent and all other qmbols arc as 
previously defined. If i is a solute, its initial concentration _Y:,~= 0 and eqn. S yields the 
retention volume in the usual sense. If a small sample of one of the components, A or 
B, of the binary eluent is injected, the resulting peak is called the “concentration 
peak” and its retention volume is designated as VR_CC_ As the composition of the 
binary eluent is given by only one independent variable [i-e_. -3 = (_&) as _yrSB = 1 - 
x,.A] there will be only one concentration peak_ In general, the injection of a solute 
will also perturb the concentrations of the mixture, and therefore two peaks will 
appear: the peak of the solute and that of the concentration perturbation. as il- 
lustrated in Fig. 2. 

With binary mixtures as eluent eqn. 8 is a retention eqzration of general I-alidit? 

for isothermal, isocratic analytical chromatography and the solution is independent 
of the retention mechanism. For the retention volume of solutes it is also valid in any 
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Fig_ 2_ Trace of a detector capabie of measurin g the concentration, _FJL.r) (molar fraction). afier 
injection of a solute. su. in an eluent composed of a bina mixture with components A and B. Com- 
position of the eluent before injection is designated b,v _<; V,,, is the retention volume of the perturbation 
of the duent composition; V,, is that of t&e solute; V is the (constant) flow-rate of the eluent; and I is time. 
Note tiiat x6, f _rSs + x_ = 1. 

N-component eluent. Its application to liquid-solid chromatography will be shown in 
a separate section. 

In order to demonstrate its versatility, eqn. S will now be applied to a well 
know-n case: gas-liquid chromatography with a mobile phase composed of a mixture 
of two ideal gases; ccmponent S is soluble in the liquid stationary phase whereas 
component I is insoluble. The volume of the gas phase in the chromatographic col- 
umn will be designated by Q. Further, it is supposed that the liquid film on the inert 
solid support has the same density, do, as that of the bulk. Therefore, the voiume ofthe 
stationary phase can be calculated as V,, = we/da, where W, is the mass of the sta- 
tionary liquid in the column_ The column capacity is then calculated as 

where C= is the molar volume of the gas phase and J refers to one of the coinponents of 
the mobile phase (1 or S). The gas phase will aIways behave as a mixture of ideal gases 
such that c&q) = L;~(_Q = RT,I’F=. Also, as comFpnent I is insoluble in the station&y 
phase, the column capacity is 
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Eqn. 11 results from the use of eqns. 9 and 10 in eqn. S to calculate the retention 
volume: 

(11) 

This same result was found by Valentin and Guiocho# in their discussion of the 
“step and pulse method” for the determination of equilibrium isotherms (the 
“method of minor disturbance” in ref. 17). The reasoning used by these authors is, in 
principle, the same as that presented here, with *Jle restriction that their treatment 
applies only to the specilic case of gas chromatography. 

Eqn. 11 gives the same retention volume for the perturbation of the eluent 
composition by the injection of a very small amount of S or I (“concentration peak”, 
cc) : - 

‘.‘-- R.cc V = Vpt”& (I- -_x;s) F o 
\ ( ) G-32.s -Ls 

(12) 

expressed with srtwh as the independent variable_ Of course. the polarity of the detector 
signal will be inverted depending on whether S or i was injected. Eqn_ 11 may be 
further applied to two special situations. In the first case, the concentration of the 
soluble gas. _x-& is diminished to a small value. small enough that (I - .I-~.,) 2 1 but 
much higher than the concentration perturbation introduced by a sample. For the 
injection of an “infinitesimal” amount of the insoluble carrier eqn. 12 gives the fol- 
lowing for the retention volume of the “vacancy peak” (subscript vp; a special case 
of the concentration peak): 

vRmsp = v, f- v&, cc,, (‘ > c-r,5 --o 

where k.lid*) is the partition coefficient in the classical sense of the soluble gas, S, at 
ideal dilution, but, as the asterisk indicates, referring to a stationary phase saturated 
with the gas S. At these few concentrations eqn. 13 may he generalized_ If the gas S is 
a mixture of R components, S p, ---3 sj, . . -, S,, but the total concentration of the 
soluble gases remains small, then the injection of an even smaller amount of the 
insoluble carrier will provoke a “vacancy chromatogram” as a series of “negative” 
peaks”. Eqn. 13 is valid for the retention volume of every component, Sj, in this 
chromatogram. In the second special case there is only an insoluble carrier (xzs = 0) 
and the soluble carrier is injected as soIute, su = S. Eqn. I2 simplifies to 

V = v, f vccp = v, -I- @id’ v, , 
R.SU (14) 

and g&s the classical relationship for partition chromatography as presented by 
Martin and SyngeLg. Eqn. 14 can also be generalized for an acomponent sample of 
solutes. Comparing eqns. 13 and 14 it is seen that a “vacancy chromatogram” is the 
mirror image reflected though the baseline of that made in the normal mode if k’t““*’ 
= k’“’ 
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In summary, this section has shown that the chromatographic process can be 
dextibeci in terms of the column capacities, ii;, and the composition of the mobile 
phase. _YP_ The composition vector is known and its deviation around the constant 
eluent composition, -3. is measured by a detector subsequent to the chromatographic 
column. On the other hand. for the measurement of the unknown column capacity 
only a non-chromatographic method was availabie, namely to empty the mobile 
phase from the column and then determine amount end composition of the column 
y:eld. 

CHROXfATOGR4PHIC DE-I-ERMINXTION OF THE COLUMN CAPACITY 

Let us imagine a sohtte. P. which is in every respect identical with component I 
of the eluent with the exception of one property permitting its detection. Obviously 
the two compounds are inseparable and the same molar ratio will be found every- 
\vhere in any system_ In the chromatographic column. the following holds true: 

The retention volume of the labelled component J* can be calculated with eqn. S by 
substituting the partial derivative computed with the aid of eqn. 15. This results in 

= ro,,o -\-0 
u cJ.- id (16) 

Rearrangement of eqn. 16 gives the relationship between molar component capacity, 
total molar eluent capacity and retention volumes of the labelled components as 
fohows : 

Eqn. IS gives the method of determination of the molar totai eluent capacity of the 
cohuIul_ 

Following the suggestion of Knox znd co-workers. for chronatographic pur- 
poses Inbelied solutes can best be approximated by compounds containing radioactive 
carbons. Less satisfactory but much easier to work with regarding handling and 
detLztion are deuterated compounds proposed in ref. 20 and used by lMcCormick and 
KargeP*‘. The best solution might be the use of a series of compounds with a dif- 
ferent degree of deuteration. In general there is a small change in physical properties 
with the degree of deuteration from non-deuterated to fully deuterated compounds. 
To a first approximation, this change may be considered to be hear_ Therefore, 
retention volumes of compounds deuterated to different degrees, e.g., 50 and ItJO%, 
could he extrapolated to 0 7: to give retention volumes of “Iabelled but not deuterated 
compounds+‘. 
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ADSORPTION AT A LIQUID-SOLID INTERFACE 

In the classical experiment demonstrating adsorption at a liquid-solid inter- 
face, a total of n,,,, moles of an N-component liquid mixture of known ccmposition 
_< is brought into contact with a solid of surface area S_ After equilibration there 
remains a liquid phase, the composition of which is determined at a point far enough 
from the interface to give _Yfl (B refers to the bulk). Any difference between the molar 
fraction of a component before and after contact, ds, = s,, - _Y~,. is interpreted to 
be the effect of adsorption of the components of the mixture at the liquid-solid 
interface. It is concluded that there is a surface phase in which material is retained 
with a composition different from that of the bulk but it is now realized that the in- 
formation, tqj,,. _c= and ds, - is not suEcient to calculate the amount and composition 
of the adsorbed substance_ Therefore, surface concentrations cannot be given. 

Let us recall Gibbs‘ proposal to find the way out of this dilemma. For the 
description of the adsorption system in equilibrium a volume with a boundary paral- 
lel to the plane (not curved) interface, I’,,,,. is chosen for the liquid bulk by some well 
defined --convention x” (referred to by the subscript “CX’). The plane placed paral- 
lel to the interface to limit the bulk is normally termed the ‘-Gibbs dividing plane”. It 
is assumed that material in this volume has the bulk composition, _$_ Volume and 
composition determine the material content of the bulk IQ~, and as the total amount of 
component J in the system, rz,,, is known, the adsorbed material.rr,J,canbe calculated 
as in eqn. 19a. Further, being proved by experiment that the imbalance of the com- 
position is proportional to the surface area of the solid, the following material balance 
can be written for each cdmponent: 

%,s = srJiCX = II=,J - -%J J’/J~&J(-~~) (J = A,B, ___, N) (194 

The surface concentration, rJicx, as defined by eqn. 19a and given in units of moles 
per unit surface area, clearly depends on the choice of the bulk volume and caE be 
positive or negative_ 

Analogous reasoning can be applied in describing the adsorption process in 
terms of mass m and mass fraction p, resulting in surface concentrations IT, expressed 
in units of mass/surface area. The resulting material balance can also be obtained by 
multiplication of eqn. 19a with the molar mass, M,, of component J, giving 

where f&@-s) = z:~(X~)/M~ is the specific volume of the mixture in the bulk at the 
composition jjfi (&!, is the mean molar mass of the bulk). 

Multiplication of eqn. 19a by the partial molar volume. r,(FI’). of component J 
results in a similar material balance in terms of volume. V, volume fraction, cp_ and 
surface concentration, ‘f’. in units of vohunejsurfacc area given by eqn. 19~: 

The language of eqn. 19c is unusual in application of Gibbs’ procedure_ Its basic 
drawback lies in the fact that partial volumes, being functions of the composition, 
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pressure and temperature, are also different in an adsorbed state. The value cf a 
partial volume will change with the concentration gradient generated by the force 
field near the interface and its (average) vahre in the surface phase will not be known. 
in the adsorption system only the bulk has a well defined composition and there is no 
other choice but to refer to a partial volume at the bulk composition after the ad- 
sorption process (_TP). In conclusion, all disadvantages of this language originate from 
the ‘-non-ideality-’ of fluid mixtures_ Concerning volumes, however. the laws of ideal 
mixtures are in general good approximations for non-ionic liquid mixtures. There- 
fore. apart from some drawbacks, this language has several advantages. Surface 
concentrations expressed as volume per unit surface area are easy to visualize_ In 
Figs. 3-5 these units are chosen to illustrate the principle of Gibbs’ procedure. With 
the example of a binary (ideal) liquid mixture it is illustrated in Fig. 3 that surface 
concentrations depend directly on the position of the dividing plane. Le.. on the 
koiume attributed to the bulk. 

a b c 
Fig_ 3_ Ihstration of the adsorption in a binary liquid mixture at the interface in contact with a solid 
(abcurt the liquid. not shox+n). (a) Near the interface there is a concentration gradient. (b), (c) A plane is 
placed parallel to the surface at Tao diifsrent positionschosen by purely arbitrary comentions- The portion 
c’lt off is considered as the surface phase accounting for the whole concentxation difference near the 
surf.tce_ The bulk hxs now a well defmed volume. V,. and. being homogeneous. a well deEned material 
content V, (q, i ~,_a). The position of the plane (arrow) determines also the ~olun~es of X and B left in the 
surfze phase which projected to the surface area of the dividing plane. give surface concentrations in units 
of \ oiume:surface area. Notr that the surface concentration of components Y + and Y’, strongly depend on 
the position of the dividing plane. For the volume designated by an asterisk, see caption to Fig. 4. 

The question now arises of how to fix the position of the Gibbs’ dividing plane, 
and more specifically, how to fix it by an internal convention. Internal conventions 
are those which refer to the adsorption process itself. In the present treatment surface 
concentrations will only be referred to “Classical” internal conventions. For an N- 
component mixture there are N conventions stating that component “J is not ad- 



ADSORE’TION FROM LIQUID ,MlXTURES AND LC 

yrd=O 

b 

%=O 

c 
Fig. 4 Illustration of the surfkcc concentration of adsorbed components, Y (volume/surface area)_ for 
three of the “classical’* conventions to ik the position of the Gibbs dividing plane at the liquid-solid 
interface of a binary liquid mixture. The solid is above the liquid (not shown, as in Fig. 3). The component 
A _k the more strongly adsorbed component while B exhibits a waker adsorption_ Note that for the sake of 
demonstration, the additional volume is not spread ober the liquid sti2ce (2s it should be), extending the 
homogeneous liquid column up to the dividing plane the approximate position of which is marked by 
arrow. The excess concentration referring to the cNX conbention is also identified in Fig. 3 (see in Fig_ 3 the 
volume designated by an asterisk). 

Fig. 5. YZk&ai” positions of the Gibbs dkiding plane at the solid-liquid (a,@) interface of an N- 
component iiquid mixture d&cd by the conditions indicated_ Concentration of components in the surface 

Fbhx, (PA, --7 Ps, are givezlfn tzlits of voluXne/sUrface - The mmponent adsorbed weakest is A and 
adsorption strength is increa&g to N_ The buik volume is largest $wzeeding into the solid) S the plane is 
placed with the convention that the strongest adsorbed component is considered to be non adsorbed (P, = 
0) and smaikst with r.he condition ‘P, = 0. Note that with the condition that as an overall e&et there is no 
adsorbed volume (VW = O), the dividing plane is near thephysical interface 
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T.4BLE I 

SUM-MARY OF THE RELATIONSHIPS (A) FOR THE INTERPRETATION OF RETENTION 
VOLUMES IN LIQUID-SOLID CHROMATOGRAPHY WITH AN iV_COMPCjNENT LIQUID MIX- 
TtiRE AS THE ELUENT AND (B) FOR THE DETERMINATION OF ADSORPTION ISOTHERMS 
A-f THE LIQtiID-SOLID INTERFACE OF BINARY LIQUID MIXTURES BY THE CHRO.MA- 
TOGRaPHIC METHOD 

l-lx qmbols r. ll and ‘f’ rcprcxn t su&ce concntr&ons in units of mol mvl_ g ril-’ and ml m-‘. 
rrspectiwly. and x-p and 9 are the corresponding dimensionless bulk conceatratioas: moIar fraction, mass 
fraction and volume fraction. Lower-cxse Greek Ietters refer to material transported by the duent being 
in the mobile phase. p. in the stationary phase. 0, or referring to the total capacity of the column 
(x = p + G); in the static adsorption system u has the same meaning and fi refers to the bulk (r = 
B + 6). Cap&l J or K refers co components of the eluent, su to a solute and cc to a concentration 
pxturbation of the eluent_ The symbols n. nz and r represent rhe number of moles. mass and volume. 
respectively; r is the partial molar volume and r’ is the partial specific volume. An example for the 
interconversioc of surfaoz concentrations: r, r,A is to be con~ertcd to Il, Ii-a: calculate first r,,,.W, = 
n , rlr.~ (mass concentration but with the incoherent comention) and substitute this into eqn. 24b. Inter- 
conversion in *&e JNA convention is simple. e_g_. n, ,,, = _ri,r, ,,*_ 

Conrenrion Gibbs- convemions for ihe adrorprion from un X-componenr 

liquid mixture ax the Iiquidkoiid tirerface: sraric syswm 

Relnrionships for the 
inierpreraiion of 

retention voIumes 
in liquid-solid chromaro- 

graplty. 
Eluenr: N-componenf 

mivzure [see eqnY 4) 

E$uzrionsfor the caIcuiaCon and irrler- 

conversion of surface concenrralioru 

Volume of the buik, Erptl. dern. of 

VP_ V P. cr 
referrtig 10 a “ckssical‘ conwnrion 

r, = n, = Y, = OtJNA (2C) r,,, = r,, - (x&v5,) r,,, (22) “Jr*!-r$> (26) ih,_ (32) 

-- -__ 

* Kote that ffsc,%.+ = l\f,r,,,,, and YK,,, = r,T, ,,.+. 
* Valid for ideal mixtures only. For real mistures see eqn 94 in the Appendix. 

sorbecY_ This JNA convention, as introduced, is independent of the units used, con- 
trary to a further “nothing is adsorbed” NA convention_ in this further case it is 
construed to fix the total amount adsorbed as zero in terms of number of moles (n) or 
mass (m) or volume (cl_ Consequently, there wili be only one JNA convention but 
‘&ree different NA conventions: nNA, mN.4 and cNA. 

In order to show that these conventions allow the &lc@ati& of &Ii de&d 
surface concentrations, let us suppose that surface concentrations referring to-an 
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--- - 

E.rperimenfal &rerminarion of poinzs 
on rhe isorherm of d in a binar_v 
mtrmre. A + B 

Const. of Peak propugarion resistivif_v. 
eqn. 43, yi cr in eqn. 13 

VP 
Labelled K Solute 

-_- ___. _... -._ -- 

Concenlralion 
peak 

L-rcr 

Isotherm of A.- 

r,. n, ami Y.4 
from eqerimenr 

-_ -- --. 

arbitrary convention, CX, are known_ For a first &ample, it is presumed that 

- r,-= Q(=lI, =-!&, cw 
impIementing the JMA convention in the m-x-I- language. The link between w&ace - 
concentrations referring to the CX and JNA conventions is formed by applying eqn- 
1% successively io calculate FKcm, -F,,,, and E,~,sA (= 0). Combination of the 
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resu!ting expressions gives. after rearrangement, eqn. 21, 

Comparison of eqn. 21 with eqn. i9a reveals that the coefficient of (_x&_Q,) is the 
surface concentration r,;,, and so 

Eqn. 33 can be multiplied by Ai,. the molar mass of component K, or by its partiai 
molar volume, r&Q. to give analogous expressions in terms of the variables p. iI and 
cp,Y without changing the convention_ 

TO give “excess adsorption” or “reduced adsorption’* in terms of number of 
moIes Ehe convention “nothing is adsorbed” (nNA convention) is given by 

s 
r tool = Ix r, = 0 (f n,, f Yy,,,) 

3 = A 
(234 

Similar reasoning to that leading to eqn_ 22 gives. by using eqn_ 23a in 19a, the surface 
concentration of component 3: 

s 
r J nh.4 = rJ,Cx - 4.J .z k-x = rJ Cx - -5-r rtoc:CX (24a) 

h=A 

Anaiogous equations in terms of the variablesnr-&7 and r+!P with the conventions 
“nzNA” and “c:NA” are listed in Table I (eqns. 245 and c)_ Eqns. 24a, b and c imply 
that surface concentration and NA convention should be coherent meaning that the 
convention should be stated in units coherent with that of the surface concentration_ 
Consequently. only r,..,. nJ.mZA and Y,l,sA are surface concentrations with coherent 
CURL-sr;rians. incoherent surface concentrations are obtained in equations of the fol- 
Iowing type: 

where 114, is the molecuIar mass of J_ Obviously, the mass surface concentration in 

eqn- 25 refers to the nNA convention and can he substituted into eqn. 24b to be 
converted to flJ,mXA with the coherent convention if the surface concentrations of ah 
components are known in the nNA convention_ Sometimes incoherent surface con- 
ceatrations are encountered in the literature (see, e.g., I;,,FSA in refs. 7 and 11). 

Surface concentrations defined in eqns. 24 and 26 are independent of the po- 
sition of the Gibbs dividing plane- Alternatively, these surface concentrations are true 
surface concentrations for a particular position of the dividing plane fixed by the 
convention which is characterized by the condition stated in the convention (e.g., r, = 
0 for the JNA convention or !Py,,, = 0 for the DNA convention, etc.). Fig. 4 illustrates 
the three --classicai” positions of the Gibbs dividing plane for a binary mixture and 
Fig_ 5 the N i 1 positions of *this plane for an N-component mixture where conven- 

tions are stated in terms of concentrations expressed in C-Y units. It can be seen 
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that the dividing plane is inside the liquid mixture if the adsorption is expressed relative 
to that of the weaker adsorbed substance and inside the solid if the stronger adsorbed 
substance is the standard_ For the following discussion note that in practice the plane 
corresponding to the cNA convention is very near to the physical surface of the liquid_ 

The calculation of the bulk volume corresponding to a given convention is 
straightforward. For an example, applying the JNA convention expressed in eqn. 20 
to eqn. 19a gives 

where VslJJNA designates the value of the bulk phase volume with reference to the 
convention. The bulk volume corresponding to the nNA convention is obtained by 
summing cqn. 19a over all components in the system to give, after rearrangement 

(27a) 

where the symbol VBlnSA stands for the volume of the bulk with reference to this 
specific con<ention and the units used to introduce the convention_ Bulk volumes 
referring to other conventions are listed in TabIe I. 

In summarizing Gibbs’ procedure, let us emphasize three points before apply- 
ing the results to liquid-solid chromatography: 

(a) Surface concentrations TJicx, L!,,,, and Y,,cX are intensive equilibrium 
properties of the adsorption system and so at a given temperature and pressure they 
are functions of the bulk composition only: 

r J,CX = rJ:CX t-g) (moljsurface area) 

n J/CX =~ nJ;CX@> (mass/surface area) 

v,,cs = 5.,X(@) (volume/surface area) 

(%a) 

(2Sb) 

(2Sc) 

As already mentioned. units for convention and surface concentration should be 
coherent and should refer to one of the three systems: the Ir-s-r system of molar 
units (referred to by the subscript II), the HZ-p-l7 system of mass units (nr) or the C-CO-Y 
system of volume units (L’). 

(b) Bulk volume, Z&, has the dimensions of volume but is a convention and 
has no physical meaning. Its value depends on the total number of moles, F& and on 
the composition of the bulk if the convention is internal. 

(c) There is an important difference between the system in the classical adsorp- 
tion experiment and that determ&d by the chromatographic coiumn; in the latter 
case-the overall volume of the liquid-solid system is imposed. 

LIQUrrrSOLID ADSORPTION CHROhL4TOGRAPHY 

By identifying the composition of the “mobile phase” (_Q in the chromato- 
graphic model with that of the “bdk liquid” (_$), and rhe capacity sector of the chro- 
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matographic column (ri,) with the vector of totai number of moles in the adsorption 
syszm (13) the retention volume in liquid-solid chromatography is easy to calculate 
by use of eqn. 8. This derivation will be demonstrated by applying units related to 
mumber of moles, II (for analogous derivations in other units. see Appendix and 
Table I). 

The molar component capacity of the column for any substance, f, is calculated 
using eqn.- 19a (B -+ p; T -+ ii) to give, after rearrangement: 

By summing eqn. 29 over ali components in the system, the molar total capacity is 
given by 

Using eqns_ 29 and 30 in eqn. 8, the retention volume of component i is calculated as 

vR.i = vpiCS (_Q 4-s r; [ ($=)_To - 
P-L P 

-‘.Ei (*)z;] (31) 

Let us now apply eqn. 3 1 to the three cases important for analytical chromato- 
graphy: the retention volume of labelled components of the eluent, of the concentra- 
tion peak (binary eluent) and of solutes. 

With the convention “J is not adsorb’ (J is a component of the eluent), eqn_ 
31 gives for labelled J: 

tk.J* = ~p,m (32) 

giving the experimental method for the determination of V,,,,,. For labelled K, the 
following equation results; 

For a solute the fo!lowing equation results: 

(33) 

(34) 

Injection of a solute always perturbs the eluenr concentration, and th&efore the peak 
given in eqn. 34 wili always be accompanied by (one or more) concentration peaks 
(probably there will be N- 1 concentration peaks+). In a binary eluent, eqn. 31 gives 
for the perturbation of the concentration (J = B) “a concentration peak”“n2’ with 
the retention volume given by eqn. 35: 

(35) 
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With the convention “nothing is adsorbed” eqn. 31 reduces to a particularly simple 
form. Considering that by definition r,ot,nNA = 0, eqn. 31 is transformed into 

VR,i = Vp,ns* $_ s me 

For labellecl J eqn. 36 &es 

k-a.r* = I/;&* + S r; 

(364 

(37) 

Multiplication of eqn. 37 by _xP+, and summing the N equations gives the experimental 
method for the determination of the volume, Vti nVA. referring to this convention: 

Application of eqn. 36 to a solute gives 

Finally, the retention volume of a-concentration peak in a binary mixture is given by 

Th- derivations followed in eqns. 3 l-3640 were repeated. nzututis rnurun~~s, with the 

P’ asd rNA conventions. The results are listed in Table I. 
The general form of the equation for liquid-solid chromatography is 

vR.i = vp;CX t-$3 + s ‘p XijCX (41) 

where vp is a property of the eluent and xucx will be referred to as the peak propa- 
gation resistivitr_ of the stationary phase in question for compound i. 

It is interesting to compare this expression with the “classical” equation for the 
retention volume in par&on chromatography given in eqn. 14. The first term in eqn. 
41 is independent of the -solute and therefore it will be interpreted as a “hold-up 
volume by convention”. The second term is proportional to the surface area of the 
adsorbent, S, which has the same role as the volume of the stationary phase, V,, and 
finally the coefficient of S is analogous to the partition coefficient. Let us emphasize 
that these analogies are purely formal with the exception of that between S and V.. 
The hold-up volume is the result of a convention and therefore it has no physical 
meaning. -Further, a partition coefficient can never become negative and xiicx in eqn. 
41 can. However, it is right to designate the peak propagation resistivity of a solute as 
a Henry coeflicient. It is now clear that “net retention volumes” can be defined by 
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analo,~ with classical partition chromato_mphy as 

‘IS.i.CX = ‘R.i - ‘p,CX (42) 

but they will depend on the convention_ Specific retention volumes should be referred 
to unit surfase area of the adsorbent; 

Equations listed in Table I give all the information necessary to determine the hold- 
up volume experimentally and to interpret retention volumes correctly with reference 
to a given convention. 

it ~2s repeatedly stressed that hold-up volumes are based purely upon conven- 
tions but the question now arises as to which hold-up volume is nearest to the 
“geometrical interstitiai volume” of the column_ Although at first sight real to some 
extent. this volume is aIso an undefined quantity, having no special convention to fix 
exactly the position of the dividing-plane. Actually, the volume eluent capacity of the 
column measured with 2 pure liquid wouid be the geometrical interstitial volume if the 
density (specific volume) of the liquid in question was the same in the bulk and adsorbed 
state and if the boundary between liquid and solid was independent of the nature of 
the liquid_ If these two conditions are fulfilled_ the proposition of refs- 22 and 23 to 
calculate this volume from the weight difference of the column filled with two liquids 
and using the density of the pure non-adsorbed liquid in the calculations would result 
in the correct answer. An additional condition should be ft&ihed if mixtures are used 
for its determination: the partial moIar volumes of the components should remain the 
same at the composition of the surface phase as they are in the bulk. In practice, in 
non-ionic mixtures. partial moiar volumes can be considered to be independent of 
composition to within 3%. It is therefore expected that the volume eluent capacity 
vvi12 also be a constant within these limits if the pore size of the solid is such that 
exclusion effects may be ignored. 

DEi-ERMISATION OF THE ADSORPTION ISOTHERM IN BINARY UQUID MIXTURES 

In the case of a binary eluent, composed of A and B, derivation of the neces- 
sary equations for the determination of the “composite isotherm” is straightforward. 

In binary duenta there is only one independent variable of composition and 
points on this iso’herm can easily be calculated from retention data of Iabelled A and 
B. For example, in the case of the molar “nothing is adsorbed” convention the sum of 
r .c’ayA and L/rr.v.+ is zero. and therefore 

Eqn. 37 applied to solutes A* and E3* and the combination of the results with eqn. 44 
produces, after rearrangement 

(452) 
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By injection of labelled X or B a concentration peak is also produced. its net retention 
volume providing the first derivative of the isotherm as further information. Combi- 
nation of eqns. 40 and 42 gives 

Complete information- is given-for isotherms expressed in other units in Table I. 
The relationship of the retention volumes of lab&led compounds and of the 

concentration perturbation to the composite isotherm in a binary mixture is illus- 
trated in Fig. 6. The retention volumes were calculated for the two possible shapes of 
the composite isotherm. U- and S-shaped. using the volume/surface language and the 
convention P’,,, = 0. 

0 
b 

Fi_e 6. Relationship between the composite isotherm of component A of a b&q liquid mixture. ‘f“, =x4_ 
and the specific retention vohunes of the 12belled components. A*. and 9‘. and the perturbation of the 
concentration, cc, if the ideal mixture of A and B is used as the eIuent The specik retention volume. 

de&=ted br v,,,. is the net retention volume referred to 1 m’ of adsorbent surface and to the specific 
condition Yw = 0. The example constructed employs arbitrary units but in practice figu-es of similar order 
of magoitude are obtained if expressing the data in units of 4 rn-’ ( = nm). (a) The equation used for the 
U-shaped isotherm is Yp,,, - &_g&&: (b) the equation for the S-shaped isotherm is P, rX4 = 

CONCLUSION 

The results of this discussion may be important in two areas. The first concerns 
the experimental determination of composite adsorption isotherms. By the classical 
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method, a given amount of a liquid mixture of known composition is equilibrated 
with a given amount of adsorbent and a point on the adsorption isotherm is caku- 
Iated from the composition change_ Experimentally, this method is relatively easy 
with powders with high-ener,g surfaces where the wetting angle is zero or very nearly 
SC’_ Evea in t-his case, equilibrium times of several hours are common. The chromato- 
graphic method might considerably reduce the time of the determination of the 
twenry or more experimental points necessary to describe the isotherm_ Concerning 
hydrophobic, Iow-ener_q surfaces_ this couid be the only method for the determi- 
nation of composite adsorption isotherms at surfaces not wettable by the liquid. 
Inspite of wetting angles of up to 100” (water on parat&ic surfaces)‘4, even small 
mesopores would he completely filled at the pressures usually applied in liquid chro- 
maro_graphy to establish the necessary contact between the liquid and the whoie sur- 
face of the Iow-energy solid. For the calculation of isotherms, the experimental points 
must be evaluated in the coherent language of units and of a specific convention_ Of 
course. one could create new conventions; the composite isotherm symbolized by 
k- 3 r5.5 is given in units of mol m-’ but the position of the Gibbs dividing plane is 
determined by the requirement that the total adsorbed volume is zero and not the 
total adsorbed number of moles, and consequently C r ,..rNA f 0. Isotherms with such 
unusual conventions are described in refs. 7 and 11. 

The second area is liquid-solid chromatography_ Retention data have a def- 
inite meaning oniy if the hold-up volume is determined in the “self-consistent field” 
of the logic c-f the adsorption process_ Of course, it would be desirable for data to be 
interconvertible. Actually they are, but only if detailed knowledge is available about 
the properties and adsorption behaviour of *the components of the eluent, i.e., if a!1 
the N- I independent isotherms are known. For the recording and publication of 
liquid chromatographic data there appears to be a serious problem of communication 
and two related questions must be asked: (a) what is the best language to be applied in 
the calculation of hoId-up volumes?, and (b) what is the net retention volume in liquid 
chromatography? 

The hold-up volume. V,, rS_4. has already been proposed and by Knox and co- 
worker? for general use_ !ndeed, in practice a hold-up volume that is easy to model 
would be advantageous and an approximately constant hold-up volume would be 
preferable in approlcimate calculations_ These arguments point very strongly towards 
the con;ention “nothing is adsorbed” in terms of volume. 2TD,rXA_ Further, as already 
mentioned, this hold-up volume is nearest to some sort of geometrical interstitial 
volume in the column and it can also be approximated by the weighing method of 
refs. 22 and 23 if adsorbents of low surface energy are used, as in reversed-phase 
chromatography. On the other hand, theoretical arguments are in favour of the 
reIative adsorption language with the “J is not adsorbed” convention, because in the 
Gibbs equation for adsorption from mixtures the decrease in the interfacial tension 
is proportional to this surface concentration_ 

An experimental verification of the results presented in this paper and further 
information on this subject will be published in the near futurez5_ 

APPENDIX 

Soiuriim of rhe nmss ba!ance equation (eqns_ 6-8) 
The law of mass conservation was expressed by a system of m partial differen- 
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from the column iniet as the total number of moles having ff owed through the cross- 
section from the beginning of the process (t =0) to time t. The transformation of 
variables indicated in eqn. 48 applied to the first m- 1 equations of system 47, com- 
bined with eqns. 50 and 51, leads, after rearrangement, to 

As previousIy noted. the molar capacities, I?,_+ depend only on the mobile phase 
composition _%?*: 

The system of m- I differential equations (eqn. 54) can now be written in the form 

m--L 
1 - 

z cl- -L 0Zzc.i - -vp.i nr.rd _~_-c,.J 
i &n~_,,, - - - 2 

l- 

c-r,.l _ ss - 
c’q SZ 

(i = a ___. nz - 1) (56) 

l=S 

where the Kronecker symbol, 6,,. is defkxd as usual (biI = 0 if i f I and Sii = 1 for all 
I>_ With vector notation. the set of eqn. 56 becomes 

(57) 

where A is the (m- 1) x (III- 1) matrix with the elements clil: 

If at time f = 0 the composition of the mobiIe phase is uniform along the column, 
then 

and if only infinitesimal perturbations of the concentration are considered, the matrix 
A czn be taken as constant, its ekments being a,(_). Under the same assumptions, 
also the molar volume of the mobile phase is constant: 

In this case the local time, q, is proportional to the volume having flowed through the 
cross-section, as follows from eqn. 49: 

Z-E q(x) = i ridr 
0 

(61) 
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Let us now look for solutions of the system of eqns. 57 having the following 
particular form: 

_cJz,q) = fA (k-q) _q (62) 

where fi is any differentiable function and PM is a constant vector. The calculation of 
partial derivatives of eqn. 62 is straightforward and gives 

(63) 

Introduction of eqn. 63 into the differential system 57 transforms it to an eigenvalue 
problem: 

An expression having the form of eqn. 64 is a solution of the differential problem if i. 
is an eigenvalue of the matrix A and -3 is the corresponding eigenvector. If the matrix 
A has (m- 1) distinct eigenvalues (&. ___, I,_ 1). the set of the cor;esponding e&en- 
vectors (-Pp. _ _ .) x,T- ‘) is a basis of the vector space of the _FP_ In this case the 
general solution of the differential problem may be written as a linear combination 
of the eigenvectors: 

m-l 

_F&,q) = C f,(i,z-q) _$ 
i=o 

The coefficients fi have to be determined from the boundary condition at the inlet of 
the column: 

_TJz=O,q) = _qq) (66) 

where -F(q) describes the composition of the mixture entering in the column as a 
function of the “local time”, &=O,t)_ 

The form of eqn_ 65 shows that, for any differentiable boundary condition (eqn. 
66), the general solution is a superposition of m - 1 concentration signals, each travel- 
ling without deformation along the column with constant velocity (the inverse of the 
eigenvaluej- with respect to the local time. Taking into consideration eqn. 61, the 
corresponding retention volumes are given as 

Let us now examine the question of the existence of the eigenvalues of the 
matrix A, restricting the discussion to the case of a binary mixture as eluent, but 
allowing any number of solutes. Let a and m be the components of the eluem. For 
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each other substance in the system. the initial value of the molar fraction is zero by 
hypothesis: 

It is evident *&at if a substance has zero concentration in the mobile phase. its moiar 
capacity in the column also disappears: 

&j(_FJ = 0 (6% 

if xPai = 0. whatever is the value of the other components of the vector _Fj. As a 
consequence the following rule is valid: 

(70) 

-._ ~tz=ri.c-.....m-IaandI~i. The matrix A thus takes a triangular form, all elements 
a, with I c i being zero; in fact. by eqn_ 58 we have for 1‘ = b, _ _ _ , m-l and I -C i: 

(71) 

The eigenvalues of a triangular matrix are the diagonal elements. If these 
eigenvdues are all distinct and psitive- the signal observed at the outlet of the 
column will be a superposition of 172 - 1 signals characterized by the retention volumes 
given by eqn. 67: 

(72) 

It should be noted that, depending on the boundary condition, some of these concen- 
tration signals may have a zero amplitude. It is easy to show that eqn. 72 (identical 
to eqn. 8) is also valid in an eluent composed of more than ttio components if i is a 
solute (i.e.. if A-~_, = 0). 

Retenttin equations for iiquid-solid chromatography in terms of diyferent writs; trans- 

fonnarions of eqn. 31 

Mass lartguage: m-p47 (mass. mass~raction, mass per unit surl;rce area) _ For a 
solutz su (XL, = 0 or equivaIentIy, pz_ = 0), eqn_ 31 reduces to 

(73) 
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By definition pg_i = Mgr,J~%l~, so for a solute 

On the other hand, 17ru,c- is identically zero if p,.,, = 0, and thus 

W”;CX (- > = 0 
G-yp.1 _Pp 

for I + su. Consequently, for solutes eqn. 76 holds true: 

V Rsu = V Jl]CX 

25 

(74) 

(75) 

(76) 

For the concentration peak, the derivation is restricted to the case of a binary mixture 
(A and B) as eluent. Eqn. 31 gives for the retention volume 

V R,cc - - V&X 

Differentiation of the expression pBeA = MAxPwAj( Af,s,~, + &fBsPJ gives 

Introduction of eqn. 78 into eqn. 77 gives, after rearrangement, 

In particular. in the convention mNA (Et,,, ,,,,.% = 0) eqn. 79 simphfies to give 

I’ R.cc = V pmS.4 f so; 

(77) 

(78) 

(79) 

(SO) 

Volume language: r-qbP ( sohme, roimte fraction, ~0Iume per unit mrjace 

area)_ For a solute su (_I-~..,, = 0 or equivalently cp:.,, = 0), eqn. 31 gives 
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as I--,Iu.cly (3;) = 0. By d e mtlon qU_i = vi _K~_J~= (vi is for the partial molar volume fi - - 

and ~7~ for the mean molar volume of the eluent), and so for a solute 

Considering that !f’,*.cs is identically zero if yP.,” = 0. 

for 1 f su. Eqn. SI can now be written as 

The derivation for the concentration peak is restricted to a binary system_ Eqn. 
31 can be written in the following form: 

Let us now recall two basic properties of the molar volumes in a binary mixture: 

(87) 

and that the volume fraction (P~_~ is &en by 

V&A = 1P.A r.Jrp (88) 

By using eqns_ 86 and 87 the derivative of the volume fraction with respect to the 
mofar fraction can now be expressed as follows: 

As by definition !P_&- = a, F,,,, the first term of the coetiicient of S in eqn. 55 can 

be w&ten as 
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turbation; su, solute; i, either J, cc or su; c. column; /3, bulk of the liquid; CX, con- 
venTion X (GLC, model for gas-liquid chromatography or one of the conventions 
j?<\A, nNA, ,nNA and cNA); K, column capacity (total of a component in the column 
transported by the mobiIe phase); p. mobile phase; G. [two meanings]. (i) of the sta- 
tionar; phase and (ii) material adsorbed or absorbed in the stationary phase; S, unit 
surface area; tot. sum over all components present; r. total amount in (or of) a mix- 
ture before adsorption. 

Superscripts 
0. before the beginning of the chromatographic process; (id), ideal dilution_ 
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