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SUMMARY

It is shown that retention volumes can be calculated in terms of the total
material content in ithe chromatographic column as transported by the eluent, termed
the “column capacity”. With the aid of this retention equation, of general validity,
the necessary link is established between Gibbs’ description of adsorption at a liquid—
solid interface and the theory of retention in liquid-solid chromatography. Relation-
ships are given for the correct interpretation of retention volumes and for the chroma-
tographic determination of adsorption isotherms of the components in a binary
liquid mixture.

INTRODUCTION

In the mathematical treatment of multi-component chromatography by De
Vault!, retention volumes are found to be the eigenvalues of a matrix, the elements of
which are the partial derivatives of the partition isotherms with respect to the concen-
tration in the mobile phase. Baylé and Klinkenberg® and Mangelsdorf® pointed out
very clearly that conclusions drawn from this modei can be considered valid only if it
can be shown that the matrix has real, positive eigenvalues. At present there is no
thermodynamic proof of general validity; a demonstration was given only for some
special cases by Mangelsdorf® and Helfferich and Klein*. Perhaps it is because of this
basic difficulty that the results of this treatment were never applied to a quantitative
evaluation of experiments. Further, the link was never obvious between the theory of
adsorption from liquid mixtures and that of liquid—solid chromatography. This ques-
tion has already been ireated by De Vault' and later by Schay®, but the application of
their theoretical results to experiment is not without difficulties, as it is shown by
several more recent papers®?® on the determination of hold-up volumes and com-
posite adsorption isotherms.

In this paper we propose an interpretation of experimental data in liquid chro-
matography that is coherent with the theory of adsorption. Restrictions had to be
introduced for the general validity of the conclusions; they are in relation to the lack

* Based on the doctoral thesis of F. Riedo.
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of a solution of the fundamental eigenvalue problem. Also, an experimental method
for the determination of composite isotherms in binary liquid mixtures is discussed.

RETENTION IN THE CHROMATOGRAPHIC COLUMN UNDER ANALYTICAL CONDITIONS

In the classical model of the chromatographic process a solute is distributed
between two homogeneous phases of well defined boundary and extent, one of which
is mobile and the other stationary. The identification of such phases in different types
of chromatography is not always obvious. For example, in liquid-solid chromatogra-
phy with a mixture as the eluent there exists in the liquid, normal to the elueni—solid
interface. a concentration gradient. Experimental evidence shows that far enough
from the interface there is liquid of homogeneous composition but no definite bound-
ary can be established between the homogeneous portion inside the liquid and the
certainly non-homogeneous surface phase. In the dynamic chromatographic system
there arises a further boundary problem, namely that between the mobile part of the
eluent (supposedly of homogeneous composition) and the stationary layer near the
surface. A final problem is the identification of an eluent in the sense of a ““carrier of
solutes™. Actually, in this respect there is no difference between components of the
eluent and those of the sample; in the column every compound is once part of the
carrier and then part of the stationary layer. Liquid-solid chromatography is a typ-
ical example of “multi-componeni chromatography with interference™ as defined by
Helfferich and Klein®. It can be concluded that in these instances the classical model is
not adequate to describe the chromatographic process because the identification of a
homogeneous stationary phase is not possible. Obviously. concepts intimately refated
to this model such as partition coefficient and hold-up volume also have no evident
interpretation.

In the following. a new approach is proposed and it will be shown that it is
possible to describe the chromatographic process with the aid of a function called the
~colurnn capacity™ and by only supposing that there is a homogeneous mobile phase
(referred to by the subscript i) which has a material content greater than zero. It will
be shown that in the general case the exact value of this material content (and of the
corresponding volume) can be left unspecified. If useful or necessary it can be de-
termined from case to case on the basis of a model (e.g., gas-liquid chromatography)
or a convention (e.g., liquid-solid chromatography).

For the definition of the column capacity let us consider an infinite amount of a
fluid m-com:ponent mixture (liquid or gas) of the composition ¥, where the subscript 8
refers to this bulk. The composition is designated by an m— l-dimensional vector
with the individual molar fractions. x; ;, as components:

j_; = (--,:s--~e -‘*;3,:“ cesa -\-B.m—l) (l)

(ihe composition can also be given in terms of mass fracticns, g, or volume fractions,
@)- Let us also imagine a rigid tube filled with a well defined amount of a non-volatile
powder absolutely insoluble in the aforementioned fluid. The nature of the powder is
Ieft unspecified. The tube closed at the ends by membranes permeable to the fluid is
now considered as the system to be characterized. It is placed into the fluid mixture at
temperature 7 and pressure P. After equilibrium is established the fluid is completely
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emptied from the tube and the mass, composition and nature of the fluid yield are
determined. This result expressed in terms of number of moles is deemed the “*molar
capacity vector of the tube”, 7. One of the componenis of this vector is the “‘moiar
component capacity™, i.e., the total amount of a compound contained in the tube. At
constant temperature and pressure these /m functions depend on the compesition of

the fluid mixture:
n.; = n (%) 2)

They are equilibrium properties of the tube and as such characterize its equilibrium
state. Equivalently, the total molar capacity

m
"x,lol = Z n,;
i=a

(3)

together with the composition vector of the yield, X, also define the equilibrium state
of the tube. In non-trivial cases X, # 3.

It will be now shown that if this tube is used as a cliromatographic column
where any compound admitted in the chromatographic process (including the
sample. eluent. etc.) was included in the set of m substances then the /1 functions
n, ;(Xp) determine unequivocally the retention properties of the column under the fol-
lowing conditions:

(a) The process must be considered to proceed through states of equilibrium
(instantaneous equilibrium at any point inside the column) because the value of the
column capacity refers to equilibrinm. Any other knowledge about the retention, e.g..
retention mechanism, is not necessary.

(b} The hypothesis of the existence of a homogeneous mobile phase of non-
zero and positive material content must be admissible and plausible. It will be iden-
tified as part of the fluid mixture from the foregoing experiment; consequently. the
column capacity will refer to the composition of this phase. Howeuer. the extent of
the volume of the mobile phase need not be specified.

So far, the model as presented has been very general. For proper mathematical
treatment it is necessary to specify further the chromatographic system. The idealized
chromatographic column which will be referred to (see Fig. 1) has a uniform cross-
section at any distance, =, from the inlet (z = 0) to the outlet (z = L). It is filled with a
quasi-continuum of a porous column material with pores uniformly and microscop-
ically distributed. It is not necessary at this stage to specify the material and com-
position of the column filling (solid, solid support coated with a liquid, solid with
chemically modified surface, etc.). A fluid m-component mixture is made to flow
through the column at constant temperature, 7,. It experiences no flow resistance.
and consequently the pressure in the column is uniform, P_ (me.:a column pressure).
In this dynamic situation the composition of the mobile phase becomes a funciion of
distance along the column and time, X,(z,7). The interface separating the eluent and
the column material has a total area S. The mobile phase advances through the
column with a piston flow profile. As previously noted, it has a positive volume but
the exact value will be left unspecified. A detector is placed at the column outlet to
measure the compoesition [X(z=L,r)] of the mobile phase. In order to simplify the
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description of the dynamic behaviour of the system. the usual assumptions are intro-
duced: instantaneous equilibrium in each cross-section and no axial diffusion. The
only novel hypothesis to be made is that within any cross-section that part of the fluid
mixture which has a different composition from that of the mobile phase x,(z,7)
remains stationary. For such a column the column capacity is an intensive function
if referred to unit column length. 7 /L.
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Fig. heme of the chromatographic column filled with a quasi-continuum of a porous powder.

We now address the usual problem encountered in elution chromatography,
i.e.. that of the rerention voiume. Vi ;. of a concentration signal introduced at the
beginning of the column but in terms of the vector function

n.= n,(X,) - C))

Within any cross-section the material content can only change through material
transport by the eluent. Therefore for compound 7, the material balance in the section
from the column inlet to distance z is given by the equation

{ {In X, O L}d== { {In (X, ,00))/L}d: +

[+ 4]
Maternial content in the Material content in the
section (0 —=) at time ¢ section at time ¢t = 0 (5)

+ [ [¥(0.0x, ;(0.1)t,(5,(0,0)] dr — § [PE0x, (=0 ea ((z,0)] dr

8] 4]
Amount of compound 7 Amount of compound i which
which entered at = = 0 left the section at =z

i = a. .... m where the term V{(-.f) represents the flow-rate considered to be a

function of - and r and r, is the mean molar volume of the mobile phase. Partial
differentiatior of eqn. 5 first with reference to time and then to length gives the
differential equation of the material balance as follows:

¢ C .
WD) 5 s GON = — = VD%, 072, (5 G ©

With suitable initial and boundary conditions, this set of m partial differential equa-
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tions determines the /2 functions in question: 2 — 1 composition functions. x, ; (=.7).
for the components a. .... i, .... (m—1) and the mth function. the flow-rate. F(z.¢?). It
is shown in the Appendix that, by an appropriate change of variables, the system
can be reduced to a set of m — 1 equations for the components of the unknown
composition vector X, (z,r).

Seeking a specific solution for analvrical chromatography under isothermal and
isocratic conditions, appropriate initial conditions are now given as follows. Prior
to chromatography the column is equilibrated with the eluent which is an N-
component mixture of the composition XJ with components designated by capital
letters A, ..., J. ..., N. The superscript zero refers to the time 7 = 0 when the column
is ready for injection and eluent of identical composition will enter at the inlet (= = 0)
and leave at the outlet (z = L), suggesting that this is also the composition of the
mobile phase throughout the column:

X,(=,t=0) = constant = ¥ N
At the time 1 = 0the composition of the incoming mixture is modified by injection of an
infinitesinal sample. This will introduce a composition change in a small section of
the column. As the signal is infinitesimal. only the case of one soiute will be treated. as
at infinite dilution the solutes do not interact and their retention volumes are in-
dependent of one another (see also Appendix). The vector X, = X,(z,?) is the com-
position vecior of the eluent also containing a solute. T, . For reasons of uniformityv
and (as will be seen later) of simplicity, the molar fraction of one of the components of
the eluent will always be considered as the dependent variable ¥, = (x, 4. ---, X, -
-es Xy xn—1: X)) Even by considering only infinitesimal perturbations of the com-
position, the complete solution of the mathematical problem is only possible if the
eluent contains not more than two components (i.e., the eluent is a binary mixture).
In this case the retention volume of an infinitesimal perturbation of the concentration
vector is given by

cn, ; cn .

r 0 X, o x,tot

Ri = g [(E - ‘)»_0 x/-:.i( ~ )—{-0] ®
X, /X ex,; /X,

where 2 = r (X)) is the mean molar volume of the eluent and all other symbols are as
previously defined. If i is a solute, its initial concentration ) ;= 0 and eqn. 8 vields the
retention volume in the usual sense. If a small sample of one of the components, A or
B, of the binary eluent is injected, the resulting peak is called the ““‘concentration
peak™ and its retention volume is designated as V... As the composition of the
binary eluent is given by only one independent variable [i.e.. ¥ = (xJ Jasx, g =1 —
X, 4] there will be only one concentration peak. In general, the injection of a solute
will also perturb the concentration of the mixture, and therefore two peaks will
appear: the peak of the solute and that of the concentration perturbation. as il-
lustrated in Fig. 2.

With binary mixtures as eluent equn. 8 is a retention equation of general validity
for isothermal, isocratic analytical chromatography and the solution is independent
of the retention mechanism. For the retention volume of solutes it is also valid in any
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Fig. 2. Trace of a detector capable of measuring the concentration, X, (L.r) (molar fraction). after
injection of a solute, su, in an eluent composed of a binary mixture with components A and B. Com-
position of the eluent before injection is designated by X2; V; . is the retention volume of the perturbation

of the eluent composition; Vg, is that of tne solute; ¥ is the {constant) flow-rate of the eluent; and ris time.
Notethat x, , + X.5 + X, = L.

S

N-component eluent. Its application to liquid-solid chromatography will be shown in
a separate section.

In order to demonstrate its versatility, eqn. 8 will now be applied to a well
known case: gas-liquid chromatography with a mobile phase composed of a mixture
of two ideal gases; component S is soluble in the liquid stationary phase whereas
component I 1s insoluble. The volume of the gas phase in the chromatographic col-
umn will be designated by V. Further, it is supposed that the liquid film on the inert
solid support has the same density, d,, as that of the bulk. Therefore, the volume of the
stationary phase can be calculated as ¥, = w_/d,, where w, is the mass of the sta-
tionary liquid in the column. The column capacity is then calculated as

—_— 17 e s s —— .
ny= Ve, + Vac,; = Vx,4it, + Ve, 9

where v, is the molar volume of the gas phase and J refers to one of the components of
the mobile phase (1 or S). The gas phase will always behave as a mixture of ideal gases
such that £,(X0) = v,.(X,) = RT.P_. Also, ascomponent I isinsoluble in the stationary
phase, the column capacity is

Ty tor = VFJIE# + 7, c;"c.s (lO)
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Egn. 11 results from the use of eqns. 9 and 10 in eqn. 8 to calculate the retention
volume:

o~
It
(=)
e’

Ves =V, + V(1 — =\;9.)_w,,(q )
SRR o) Fray X

This same result was found by Valentin and Guiochon!® in their discussion of the
“step and pulse method™ for the determination of equilibrium isotherms (the
“method of minor disturbance™ in ref. 17). The reasoning used by these authors is, in

tad ha =t th + s that thaie teaatsan
principle, the same as that presented here, with the restriction that their treatment

applies only to the specific case of gas chromatography.
Eqn. 11 gives the same retention volume for the perturbation of the eluent
composition by the injection of a very small amount of S or I (*‘concentration peak™,

cc):

(\‘-VR.CC = V[l + l/a L (I. - )( ) o (12)
) CXps/ Xy s

A

expressed with x,  as the independent variable. Of course. the polarity of the detector
signal will be inverted depending on whether S or I was injected. Eqn. 11 may be
further applied to two special situations. In the first case, the concentration of the
soluble gas. x$ . is diminished to a small value. small enough that (1 — o)) = lbut
much higher than the concentration perturbation introduced by a sample. For the
injection of an ~infinitesimal’™ amount of the insoluble carrier eqn. 12 gives the fol-
lowing for the retention volume of the ““vacancy peak™ (subscript vp; a special case
of the concentration peak):

A o T
.S,

where A%“* is the partition coefficient in the classical sense of the soluble gas, S, at
ideal dilution, but, as the asterisk indicates, referring to a stationary phase saturated
with the gas S. At these low concentrations eqn. 13 may be generalized. If the gas S is
a mixture of n components, S_, ..., S;, ..., S,, but the total concentration of the
soluble gases remains small, then the injection of an even smaller amount of the
insoluble carrier will provoke a ““vacancy chromatogram™ as a series of ““negative”
peaks'S. Eqn. 13 is valid for the retention volume of every component, S;, in this
chromatogram. In the second special case there is only an insoluble carrier (x5 = 0)
and the soluble carrier is injected as solute, su = S. Eqn. 12 simplifies to

CCss

Vesw = V. + V. v( ) =V, + ki VvV, N (i4)
€x.s/o -

and gives the classical relationship for partition chromatography as presented by
Martin and Synge'®. Eqn. 14 can also be generalized for an n~component sample of
solutes. Comparing egns. 13 and 14 it is seen that a “vacancy chromatogram™ is the

mirror image reflected through the baseline of that made in the normal mode if £"°*
= k¢,
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In summary, this section has shown that the chromatographic process can be
described in terms of the column capacities, 7, and the composition of the mobile
phase. X,. The composition vector is known and its deviation around the constant
eluent composition. XJ. is measured by a detector subsequent to the chromatographic
column. On the other hand. for the measurement of the unknown column capacity
only a non-chromaiographic method was availabie, namely to empty the mobile
phase from the column and then determine amount and composition of the column

vield.
CHROMATOGRAPHIC DETERMINATION OF THE COLUMN CAPACITY

Let us imagine a solute. J*. which is in every respect identical with component [
of the eluent with the exception of one property permitting its detection. Obviously
the two compounds are inseparable and the same molar ratio will be found every-
where in any system. In the chromatographic column, the following holds true:

. ;
Mage _ Nudx (: Puye _ (PuJ*) (15)
ng Xy Pus Py

The reteniion volume of the labelled component J* can be calculated with eqn. 8 by
substituting the partial derivaiive computed with the aid of eqgn. 135. This results in

on,

e — 0 X% _ ,.0,,0 -,.0

IRJ* = U, (C-:\_ )—‘-_0 - "u"xJ.-\#J (16)
tplk/ tp

Rearrangement of egn. 16 gives the relationship between molar component capacity,
total molar eluent capacity and retention voiumes of the labelled components as
follows:

4 — 4 . 0
Moy = Xpy VraulTy (17)

N

ng.lo! = Z (xg,_l l,RJ* ; l-.g) (18)

J=A

Eqn. 18 gives the method of determination of the molar total eluent capacity of the
column.

Following the suggestion of Knox and co-workers, for chromatographic pur-
poses labelled solutes can best be approximated by compounds containing radioactive
carbon®. Less satisfactory but much easier to work with regarding handling and
detection are deuterated compounds proposed in ref. 20 and used by McCormick and
Karger®-’. The best solution might be the use of a series of compounds with a dif-
ferent degree of deuteration. In general there is a small change in physical properties
with the degree of deuteration from non-deuterated to fully deuterated compouads.
To a first approximation, this change may be considered to be linear. Therefore,
retention volumes of compounds deuterated to different degrees, e.g., 50 and 1007,
could be extrapoiated to 0 7, to give retention volumes of “‘labelled but not deuterated
compounds™. ) -
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ADSORPTION AT A LIQUID-SOLID INTERFACE

In the classical experiment demonstrating adsorption at a liquid-solid inter-
face, a total of n_,,, moles of an N-component liguid mixture of known composition
X, is brought into contact with a solid of surface area S. After equilibration there
remains a liquid phase, the composition of which is determined at a point far enough
from the interface to give X; (B refers to the bulk). Any difference between the molar
fraction of a component before and after contact, Ax; = x.; — xg,. is interpreted to
be the effect of adsorption of the components of the mixture at the liquid-solid
interface. It is concluded that there is a surface phase in which material is retained
with a composition different from that of the bulk but it is now realized that the in-
formation, n, ... X, 2and AX, is not sufficient to calculate the amount and composition
of the adsorbed substance. Therefore, surface concentrations cannot be given.

Let us recall Gibbs™ proposal to find the way out of this dilemma. For the
description of the adsorption system in equilibrium a volume with a boundary paral-
lel to the plane (not curved) interface, Fj . is chosen for the liquid bulk by some well
defined —convention X (referred to by the subscript “CX’"). The plane placed paral-
lel to the interface to limit the bulk is normally termed the “"Gibbs dividing plane™. It
is assumed that material in this volume has the bulk composition. §. Volume and
composition determine the material content of the bulk n7; 5, and as the total amount of
component J in the system, n_,, is known, the adsorbed material.n, j,canbe calculated
as in eqn. 19a. Further, being proved by experiment that the imbalance of the com-
position is proportional to the surface area of the solid, the following material balance
can be written for each component:

,ld".] = Srjicx = ’l:‘j -_ .\BJ ‘/” Cx/l.ﬁ(-‘_\:g) (J = A,B, ceesy N) (193.)

The surface concentration, Iy, as defined by eqn. 19a and given in units of moles
per unit surface area, clearly depends on the choice of tiie bulk volume and car be
positive or negative.

Analogous reasoning can be applied in describing the adsorption process in
terms of mass m and mass fraction p, resulting in surface concentrations I7, expressed
in units of mass/surface area. The resulting material balance can also be obtained by
multiplication of eqn. 19a with the molar mass, M,, of component J, giving

myy = n, M, = SHJ,’CX = M_y — Py, VB,CX/’ER(I_).[J) (19b)

where Tp(Pg) = ©(Xgz)/ Mg is the specific volume of the mixture in the bulk at the
composition p, (M, is the mean molar mass of the bulk).

Multiplication of egn. 19a by the partial molar volume. (X ). of component J
results in a similar material balance in terms of volume., V, volume fraction, ¢, and
surface concentration, ¥. in units of volume/surface area given by eqn. 19¢:

Vou = e(@Ingy = S¥ycx = Vo3 @) — oa Vaex (19¢c)

The language of eqn. 19¢ is unusual in abplication of Gibbs’ procedure. Its basic
drawback lies in the fact that partial volumes, being functions of the composition,
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pressure and temperature, are also different in an adsorbed state. The value cf a
partial volume will change with the concentration gradient generated by the force
field near the interface and its (average) value in the surface phase will not be known.
In the adsorption system only the bulk has a well defined composition and there is no
othar choice but to refer 10 a partial volume at the bulk composition after the ad-
sorption process (). In conclusion, all disadvantages of this language originate from
the —“non-ideality™ of fluid mixtures. Concerning volumes, however, the laws of ideal
mixtures are in general good approximations for non-ionic liquid mixtures. There-
fore. apart from some drawbacks, this language has several advantages. Surface
concentrations expressed as volume per unit surface area are easy to visualize. In
Figs. 3-5 these units are chosen to illustrate the principle of Gibbs’ procedure. With
the example of a binary (ideal) liquid mixture it is illustrated in Fig. 3 that surface
concentrations depend directly on the position of the dividing plane. i.e.. on the
solume attributed to the bulk.

: 1-1

a b c

Fig. 3. Hlustration of the adsorption in a binary liquid mixture at the interface in contact with a solid
{above the liquid. not shown). (a) Near the interface there is a concentration gradient. (), (c) A plane is
placad parallel to the surface at two different positions chosen by purely arbitrary conventions. The portion
cut off is considered as the surface phase accounting for the whole concentration difference mear the
surface. The bulk has now a well defined volume. ¥}, and. being homogeneous. a well defined material
content. ¥z ics 4 + ¢4 ). The position of the plane (arrow) determines also the volumes of A and B leftin the
surface phase which. projected to the surface area of the dividing plane, give surface concentrations in units
of yvoiume;surface area. Note that the surface concentration of components ¥, and ¥, strongly depend on
the position of the dividing plane. For the volume designated by an asterisk, see caption to Fig. 4.

The question now arises of how to fix the position of the Gibbs’ dividing plane,
and more specifically, how to fix it by an internal convention. Internal conventions
are those which refer to the adsorption process itself. In the present treatment surface
concentrations will only be referred to ““classical™ internal conventions. For an N-
component mixture there are N conventions stating that component *'J is not ad-
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Fig. 4. llustration of the surface concentration of adsorbed components, ¥ (volume/surface area). for
three of the ““classical” conventions to fix the position of the Gibbs dividing plane at the liquid-solid
interface of a binary liquid mixture. The solid is above the liquid (not shown, as in Fig. 3). The component
A is the more strongly adsorbed component while B exhibits a weaker adsorption. Note that for the sake of
demoustration, the additional volume is not spread over the liquid surface (as it should be), extending the
homogeneous liquid columa up to the dividing plane the approximate position of which is marked by
arrow. The excess concentration referring to the tNA convention is also identified in Fig. 3 (seein Fig. 3 the
volume designated by an asterisk).

—~—

é

[

S8
&d

Fig. 5. “Classical™ positions of the Gibbs dividing planc at the solid-liquid (c/8) interface of an N-
comportent liquid mixture defined by the conditions indicated. Concentration of comporents in the surface
phase, P,, ..., Py, arc givenin units of volume/surface area. The component adsorbed weakest is A and
adsorption strength is increasing to N. The buik volume is largest (exceeding into the solid) if the plane is
placed with the convention that the strongest adsorbed component is considered to be non adsorbed (P, =
0) and smallest with the condition ¥, = 0. Note that with the condition that as an overall effect there isno
sdsorbed volume (¥, = 0), the dividing plane is pear the-physical interface. -
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Tl\BLE I

SUMMARY OF THE RELATIONSHIPS (A) FOR THE INTERPRETATION OF RETENTION
VOLUMES IN LIQUID-SOLID CHROMATOGRAPHY WITH AN N-~COMPONENT LIQUID MIX-
TURE AS THE ELUENT AND (B) FOR THE DETERMINATION OF ADSORPTION ISCTHERMS
AT THE LIQUID-SOLID INTERFACE OF BINARY LIQUID MIXTURES BY THE CHROMA-
TOGRAPHIC METHOD

The symbols I, 7 and ¥ rcpresent surface concentrations in units of mol m "2 gm~2 and ml m™2,
raspectively, and x. p and ¢ are the corresponding dimensionless bulk conceatrations: molar fraction, mass
fraction and volume fraction. Lower-case Greek letters refer to material transported by the eluent being
in the mobile phase, y, in the stationary phase, &, or referring to the total capacity of the column
(x = p# + &) in the static adsorption system ¢ has the same meaning and f refers to the bulk (r =
B + ). Capital J or K refers to components of the eluent, su to a solute and cc to a concentration
perturbation of the eluent. The symbols n, m and r represent the number of moles, mass and volume.
respectively; r is ihe partial molar volume and # is the partial specific volume. An example for the
interconversior of surface concentrations: I, .., is to be converted to I, _..: calculate first 'y, M; =
I, .. (mass concentration but with the incoherent conivention) and substitute this into eqn. 24b. Inter-

consersion in the JNA convention is simple. e.g.. Ty ;oa = Mgl jna-
Convention Gikbs® conventions for the adsorption from an N-component Relationships for the
liguid mixture ar the liqguid-solid interface; static system interpreiaiion of
retention volumes
in liquid—-solid chromato-
graphy.
Eluent: N-component
mixture (see eqn- 4)
Defmnition CY Fquations for the calculation and inter- Volume of the bulk, Expil. detn. of
conversion of surface concentrations Veer Vecr

referring to a “classical” convention

=M= ¥ =05INA (20) Iyga = Teox — anixpd Tiex (22) Rty 26)  Vp,, (32)
A N N
Fe.=90 nNA (233) IFia = Fex — Xa0 Z Ixex (243) t Z n.x (27a) KZ "':.KVR.K:: (38a)
K=4a K=A =
N N N
n.=20 mNA (230 Tyuna = Myex — Pps 2 Mxex  (230) 5 2 mx (27H) f; PexVexe (38b)
K=A A=A K=
N N N
¥, =0 INA(230) Proaa = Prex — @13 2 Prox  (240) KZ nyry (270) Y o%kVax. (380)
KN=A =A K=A
* Note that Hx jna = Mxlx aa and Py jaa = txlx na-

#* Valid for idea! mixtures only. For real mixtures sce eqn. 94 in the Appendix.

sorbed™. This INA convention, as introduced, is independent of the units used, con-
trary to a further “nothing is adsorbed™ NA convention. In this further case it is
construed to fix the total amount adsorbed as zero in terms of number of moies (1) or
mass {m) or volume (r). Consequently, there will be only one JNA conventlon but
three different NA conventions: #NA, mNA and rNA.

In order to show that these conveations allow the calculation of well defined
surface concentrations, let us suppose that surface concentrations referring to-an
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Experimental determination of points
on the isotherm of A in a binary
mixiture, A + B

Const. of Peak propagation resistivity, Concentration Isotherm of A:
eqn. 43, g, cy inegn. 43 peak r,i,ad¥,
v, Lec Y from experiment
Labelled K Solute
re... (5[‘ IEFAJ&VA)
0 KINA s iNA €1 amNa 3 &1 IS¢ -
fa ( xu.K ) (33) “:xp.su )-\12 (34) ( 6.'(,_‘ I:A ('5) Taa TN AL (33)
. S o] . Orae — Vege) X240
© I axa (36a) (‘5 o \A) L (393) (C’_A‘ NA (40a) R.As Rl.)ﬂt) A8 (452)
P Xk CXpa /X7 éx, o x2. Se®
me._« oIl . .« o { I -1 o 0
& ( k'-.\:\) (36b) (C Lo -.\A) (39b) (C LES .\.\) . (40b) (Fras t::u)Pp.A.Pn.a (d5b)
Pux Pyss /P2 CPua /ppa S
;PO' - ] ~? *t V. - ¥ O o -
: (B=) s (Fame), e (T g Caee = Tl ohaie . g,
Pux J Pgsu JPn CPpa /Oua S

arbitrary con;.'ehﬁon, CX, are known. For a first éxample, it is presumed that
r;=0(=0,=Y%) , A (20)
implémeﬁting the JNA convention in the n—x—TI" language. The link between surface

concentrations referring to the CX and JNA conventions is formed by applying eqn.
19a successively to calculate Iy, Fxana and 0. (= 0). Combination of the
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resulting expressions gives, after rearrangement, eqn. 21,

Iigna = Treex — (-"3.1(/"‘%.1) [, — XpiVpex/ L‘p(fp)ls 21

Comparison of eqn. 21 with egn. 19a reveals that the coefficient of (x5 /%) is the
surface concentration [y and so

Fijna = Tgex — (-’%.K/-‘?J) I'; (22)

Eqgn. 32 can be multiplied by A7.. the molar mass of component K, or by its partial
molar volume, rk(3). to give analogous expressions in terms of the variables p. I7and
@, ¥ without changing the convention.

To give “excess adsorption’ or “‘reduced adsorption” in terms of number of
moles the convention ““nothing is adsorbed™ (nNA convention) is given by

FJ =0 (7—5 H;ox # Tto() (23&)

M«

Fo. =

3

L

A

Simtilar reasoning to that leading to eqn. 22 gives. by using eqn. 23a in 19a, the surface
concentration of component J:

N
Tyona = Thex — R RZ Fivex = Tiex — %5 Lovex (24a)
N =A

Analogousequations in terms of the variables m—p-f1 and r—@—% with the conventions
“mNA’" and "rNA™ are listed in Table I (eqns. 24b and ¢). Eqns. 24a, b and c imply
that surface concentration and NA convention should be coherent meaning that the
convention should be stated in units coherent with that of the surface concentration.
Consequently. only I'y.,ys. [y .xa @and ¥y .4 are surface concentrations with coherent
convenrions. Incoherent surface concentrations are obtained in equations of the fol-

lowing type:
r JaNA M, = HJ;n.\’A (25)

where M, is the molecular mass of J. Obviously, the mass surface concentration in
eqn. 25 refers to the nNA convention and can be subsiituted into eqn. 24b to be
converted to fI; .. with the coherent convention if the surface concentrations of all
components are known in the 7NA convention. Sometimes incoherent surface con-
ceatrations are encountered in the literature (see, e.g., Iy, x4 in refs. 7 and 11).
Surface concentrations defined in egns. 24 and 26 are independent of the po-
sition of the Gibbs dividing plane. Alternatively, these surface concentrations are true
surface concentrations for a particular position of the dividing plane fixed by the
convention which is characterized by the condition stated in the convention (e.g., '} =
0 for the FNA convention or ¥,,, = 0 for the tNA convention, etc.). Fig. 4 illustrates
the three “classical™ positions of the Gibbs dividing plane for a binary mixture and
Fig. 5 the N+ 1 positions of this plane for an N-component mixture where conven-
tions are stated in terms of concentrations expressed in t—@—% units. It can be seen
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that the dividing plane is inside the liquid mixture if the adsorption is expressed relative
to that of the weaker adsorbed substance and inside the solid if the stronger adscrbed
substance is the standard. For the following discussion note that in practice the plane
corresponding to the ¥NA convention is very near to the physical surface of the liquid.

The calculation of the bulk volume corresponding to a given convention is
straightforward. For an example, applying the JNA convention expressed in eqn. 20
to eqn. 19a gives

4 gINa = l'p(-g) "rJ/-‘E;J (26)

where ¥,y designates the value of the bulk phase volume with reference to the
convention. The bulk volume corresponding to the nINA convention is obtained by
summing eqn. 19a over all components in the system to give, after rearrangement

N

Vpmxa= s(%) 3 n,, (27a)
}=A

where the symbol ¥, ... stands for the volume of the bulk with reference to this
specific convention and the units used to introduce the convention. Bulk volumes
referring to other conventions are listed in Table 1.

In summarizing Gibbs’ procedure, let us emphasize three points before apply-
ing the results to liquid—solid chromatography:

(a) Surface concentrations I'ycx, Iycx 2nd ¥, are intensive equilibrium
properties of the adsorption system and so at a given temperature and pressure they
are functions of the bulk composition only:

Fex = Tyex(3) (mol/surface area) (28a)
Mycx = Hyex(B) (mass/surface area) (28b)
iex = ¥iex(@ (volume/surface area) (28¢)

As already mentioned. units for convention and surface concentration should be
coherent and should refer to one of the three systems: the n—x—I system of molar
units (referred to by the subscript n), the m—p-IT system of mass units (s) or the r—o-¥
system of volume units (¢).

(b) Bulk volvme, ¥} cx, has the dimensions of volume but is a convention and
has no physical meaning. Its value depends on the total number of moles, 77, and on
the composition of the bulk if the convention is internal.

(c) There is an important difference between the system in the classical adsorp-
tion experiment and that determined by the chromatographic column; in the latter
case the overall volume of the liquid—solid system is imposed.

LIQUID-SOLID ADSORPTION CHROMATOGRAPHY

By identifying the composition of the “mobile phase™ (X,) in the chromato-
graphic model with that of the “bulk liquid™ (}). and the capacity vecior of the chro-
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matographic column (7, ) with the vector of total number of moles in the adsorption
systemn (7)) the retention volume in liquid—solid chromatography is easy to calculate
by use of eqn. 8. This derivation will be demonstrated by applying units related to
number of moles, » (for analogous derivations in other units, see Appendix and

Table I). i
The molar component capacity of the column ior any substance, i, is calculated

using eqn.-19a (B — p; © — &) to give, after rearrangement:

ne; = XV oxitu(8) + STex (29)
By summing eqn. 29 over all components in the system, the molar total capacity is
given by

sor = Viex/tu(X) + STex 30)

Using egns. 29 and 30 in egn. 8, the retention volume of component i/ is calculated as

el ex cr,
Vei = Vuex R) +S 2 [( T‘"C"‘i)mo - Xua (;CX\)-\-_O] 3D
TR,

\ CXpi /Xy E.\',“- /
Let us now apply eqn. 31 to the three cases important for analytical chromato-
graphy: the retention volume of labelled components of the eluent, of the concentra-

tion peak (binary eluent) and of solutes.
With the convention ~J is not adsorbed™ (J is a component of the eluent), eqn.

31 gives for labelled J:

Fras = Feana (32)
giving the experimental method for the determination of V4. For labelled K, the
following equation results;

Vexe = Vasaa + S22 (%) (33)

XpK

For a solute the following equation results:

£~
Frew = Vigna + S22 (C{—j’—‘—"-)_o ’ 39
TN CXpsu JX,

Injecticn of a solute always perturbs the eluent concentration, and therefore the peak
given in eqn. 34 will always be accompanied by (one or more) concentration peaks
(protably there will be N—1 concentration peaks*). In a binary eluent, eqn. 31 gives
for the perturbation of the concentration (J = B) “a concentration peak”!7-2! with
the retention volume given by eqn. 35:

S A

; 5]
- VR,cc = V BBNA + S L‘g (c_;\ﬂié—) =0 ’ 7 (35)
. oA -
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With the convention “‘nothing is adsorbed™ eqn. 31 reduces to a particularly simple
form. Considering that by definition I',,; ,na = 0, eqn. 31 is transformed into

ari'ﬂ
Vei = Vamna + S '-‘2 (‘5—\1)_‘.0 (36a)
bt 21 bt
For labelled J eqn. 36 gives
. - ro'n. .
I',R..Izla = pu,m\.-\ + 5 "2( Lo\‘)

xﬂ.l

37)

Muiltiplication of eqn. 37 by x, , and summing the N equations gives the experimental
method for the determination of the volume, V', ... referring to this convention:
N

Vinza = ]_Z\ Xps Ve (382)

Application of eqn. 36 to a solute gives

6F su/nNA
Vesu = VulzNA +S 1'2 ('——‘. -0 (393)
Cxusu /Xy

Finally, the retention volume of a concentration peak in a binary mixture is given by

el QNS

0 A'nNA

VR.cc = V#IHNA + S Ty ( E\Cn.\ )\'0 A (403)
Vg, .

Th- derivations followed in eqns. 31-36-40 were repeated. mutatis mutundis, with the
p* aad tNA conventions. The resuits are listed in Table L.
The general form of the equation for liquid—solid chromatography is

Vai = Viex () + S v, Liex 4D

where v, is a property of the eluent and x;cx will be referred to as the peak propa-
gation resistivity of the stationary phase in question for compound /.

Itis interesting to compare this expression with the ““classical™ equation for the
retention volume in partition chromatography given in eqn. 14. The first term in eqn.
41 is independent of the solute and therefore it will be interpreted as a “hold-up
volume by convention™. The second term is proportional to the surface area of the
adsorbent, S, which has the same role as the volume of the stationary phase, ¥, and
finally the coefficient of S is analogous to the partition coefficient. Let us emphasize
that these analogies are purely formal with the exception of that between S and V.
The hold-up volume is the result of a convention and therefore it has no physical
meaning. Further, a partition coefficient can never become negative and y;c in eqn.
41 can. However, it is right to designate the peak propagation resistivity of a solute as
a Henry coefficient. It is now clear that “pet retention volumes’ can be defined by
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analogy with classical partition chromatography as

Viiex = Vai — Viyex (42)
but they will depend on the convention. Specific retention volumes should be referred
- to unit surface area of the adsorbent;
Fsicx = ViaexddS = Vi fiex (43)
Equations listed in Table I give all the information necessary to determine the hold-
up volume experimentally and tc interpret retention volumes correctly with reference
to a given convention.

It was repeatedly stressed that hold-up volumes are based purely upon conven-
tions but the question now arises as to which hold-up volume is nearest to the
“geometrical interstitial volume™ of the column. Although at first sight real to some
extent. this volume is also an undefined quantity, having no special convention to fix
exactly the position of the dividing plane. Actually, the volume eluent capacity of the
column measured with a pure liquid wouid be the geometrical interstitial volume if the
density (specific volume) of the liquid in question was the same in the bulk and adsorbed
state and if the boundary between liquid and solid was independent of the nature of
the liquid. If these two conditions are fulfilled. the proposition of refs. 22 and 23 to
calculate this volume from the weight difference of the column filled with two liquids
and using the density of the pure non-adsorbed liquid in the calculations would result
in the correct answer. An additional condition should be fulfilled if mixtures are used
for its determination: the partial molar volumes of the components should remain the
same at the composition of the surface phase as they are in the bulk. In practice, in
non-ionic mixtures, partial molar volumes can be considered to be independent of
composition to within 3 9. It is therefore expected that the volume eluent capacity
will also be a constant within these limits if the pore size of the solid is such that
exclusion effects may be ignored.

DETERMINATION OF THE ADSORPTION ISOTHERM IN BINARY LIQUID MIXTURES

In the case of a binary eluent, composed of A and B, derivation of the neces-

sary equations for the determination of the “‘composite isotherm™ is straightforward.

In binary cluents there is only one independent variable of composition and

points on this isotherm can easily be calculated from retention data of labelled A and

B. For example, in the case of the molar “nothing is adsorbed™ convention the sum of

[aexa and gy is zero. and therefore

I BiaNA = T r A/mNA 44)

Eqn. 37 applied to solutes A* and B* and the combination of the results with eqn. 44
produces, after rearrangement

I A,’RNA('Y:,A) = (Vrase — Vg.a*)xg.,\ -‘2_8/5 32 (45a)
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By injection of labelled A or B a concentration peak is also produced. its net retention
volume providing the first derivative of the isotherm as further information. Combi-
nation of eqns. 40 and 42 gives

(S____g_:::-a)_\_g.f V.comnalta S  (46)
Complete information is given-for isotherms expressed in other units in Table 1.

The relationship of the retention volumes of labelled compounds and of the
concentration perturbation to the composite isotherm in a binary mixture is illus-
trated in Fig. 6. The retention volumes were calculated for the two possible shapes of
the composite isotherm. U- and S-shaped, using the volume/surface language and the
convention ¥, = 0.

g.’l/vm
or L : 4, P s
i B .
= i
(4] ~ t_- = a i
4 v !
-of e :
‘é,i/vﬂﬁ
t ] i
o8 ] I i
o6 ’ ! -
* i '
o4 ! Vi -
\\‘ H 8. ,
~. 3 ‘ / 7
o2 5 T ]&f 4 K
\‘.. A\
0 \‘ cc \‘\ / x,/
N N e
-02 I‘ M \!’—I/ A.
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"3
-085
g 1 & lcpa
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a b F

Fig. 6. Relationship between the composite isotherin of component A of a binary liquid mixture, ¥4 (\a-
and the specific retention volumes of the labelled components, A% and B*, and the perturbation of the
concentration, cc, if the ideal mixture of A and B is used as the eluent. The specific retention volume.
designated by Vs, ... is the net retention volume referred to 1 m> of adsorbent surface and to the specific
condition ¥,,, = 0. The example constructed employs arbitrary units but in practice figures of similar order
of magnitude are obtained if expressing the data ia units of ul m™~2 (= nm). (a) The equation used for the
U-shaped isotherm is Panva = 0292 4/2; (b) the equation for the S-shaped isotherm is ¥, ,\4 =
on (0.2 — 02 ,).

CONCLUSION

The results of this discussion may be important in two areas. The first concerns
the experimental determination of composite adsorption isotherms. By the classical
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method, a given amount of a liquid mixture of known composition is equilibrated
with a given amount of adsorbent and a point on the adsorption isotherm is calcu-
lated from the composition change. Experimentally, this method is relatively easy
with powders with high-energy surfaces where the wetting angle is zero or very nearly
sc. Even in this case, equilibrium times of several hours are common. The chromato-
graphic method might considerably reduce the time of the determination of the
twenty or more experimental points necessary to describe the isotherm. Concerning
hydrophobic, low-energy surfaces. this could be the only method for the determi-
nation of composite adsorpiion isotherms at surfaces not wettable by the liquid.
Inspite of wetting angles of up to 100° (water on paraffinic surfaces)>*, even small
mesopores would be completely filled at the pressures usually applied in liquid chro-
matography to establish the necessary contact between the liquid and the whole sur-
face of the low-energy solid. For the calculation of isotherms, the experimental points
must be evaluated in the coherent language of units and of a specific convention. Of
course, one could create new conventions; the composite isotherm symbolized by
I'j ;na is giver in units of mol m™* but the position of the Gibbs dividing plane is
determined by the requirement that the total adsorbed volume is zero and not the
total adsorbed number of moles, and consequently X I';..n 4 7 0. Isotherms with such
unusual conventions are described ip refs. 7 and 11.

The second area is liquid—solid chromatography. Retention data have a def-
inite meaning only if the hold-up volume is determined in the “self-consistent field™
of the logic ¢f the adsorption process. Of course, it would be desirable for data to be
interconvertible. Actually they are, but only if detailed knowledge is available about
the properties and adsorption behaviour of the components of the eluent, i.e., if all
the N—1 independent isotherms are known. For the recording and publication of
Iiquid chromatographic data there appears to be a serious problem of communication
and two related questions must be asked: (a) what is the best language to be applied in
the calculation of hold-up volumes?, and (b) what is the net retention volume in liquid
chromatography?

The hold-up volume, ¥, .\.. has already been proposed and by Knox and co-
workers® for general use. Indeed, in practice a hold-up volume that is easy to model
would be advantageous and an approximately constant hold-up volume would be
preferable in approximate calculations. These arguments point very strongly towards
the convention “"nothing is adsorbed™ in terms of volume. ¥V, .. .. Further, as already
mentioned, this hold-up volume is nearest to some sort of geometrical interstitial
\olume in the column and it can also be approximated by the weighing method of
refs. 22 and 23 if adsorbents of low surface energy are used, as in reversed-phase
chroma-.ography On the other hand, theoretical arguments are in favour of the
relative adsorption language with the *J is not adsorbed™ convention, because in the
Gibbs equation for adsorption from mixtures the decrease in the interfacial tension
is proportional to this surface concentration.

An experimental verification of the results presented in this paper and further
information on this subject will be published in the near future®s.

APPENDIX

Solution of the mass balance equation (egns. 6-8)
The law of mass conservation was expressed by a system of m partial differen-
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tial equations (eqn. 6). Replacement of the mth of these equations by the sum of all
equations gives the set

% (n. /L) = — é Wx,jv,) U=a ....m—1)
¢ c .
5 (nx,lot/L) = - Z: 7 l'.ll) 47

In order to solve this system of equations, it is convenient to perform a change of
variables, replacing the pair (-,f) by a new set of independent variables [, g(z,1)] by
using the following rules:

F).-E).G)
@)~ @)+ (@),

where the subscripts indicate in which set of variables the partial differentiations are
performed. The new variable, g, is defined as

(48)

q(z,0) = g (Vir,)de (49)

Eqn. 49 gives, after partial differentiation,

Sq - -
. <E)= = Vic, (50)

The last equation of the set 47 can now be written as

~2

(g o/ L) = — c9 61))

=

8=ct

9‘" >

As by definition ¢(z, 1=0) = 0 for all = (see eqn. 49), integration of eqn. 31 with
respect to time gives

cq
(), - Gt — iz 2)
-/t
where the superscript zero indicates that the function is taken at the initial time (z =
0): -

ng.tol = nx,!ot(z,t=o) (53)

The new variable g may be interpreted as a “local time™, given at each distance, =z,
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from the columnn inlet as the total number of moles having flowed through the cross-
section from the beginning of the process (1=0) to time r. The iransformation of
variables indicated in eqn. 48 applied to the first m— 1 equations of system 47, com-
bined with eqns. 50 and 51, leads, after rearrangement, to

1Fe X, ; Cx,, .
"E[E_q' (n:.i = X "x.(o!) + ng.tol' E; ]= _~é— (t =a...., m_l) (54)

As previously noted, the molar capacities, n, ;, depend only on the mobile phase
composition X,:

ey = n; [X,(2.9)] (53

The system of m— 1 differential equations (eqn. 54) can now be written in the form

m—1
157 ¢
L/ icx,,

l=a

where the Kronecker symbol, ,,. is defined as usual (§;, = 0if i  /and §;; = 1 forall
f). With vector notiation. the set of eqn. 36 becomes

. CX,, 25 P -
(Il.;,i - —\:p.i nx.lo[) -+ Oilng,zo;i—é.;—' = ———f (l = 4a. ....nt — l) (36)

A= = 57

where 4 is the (m—1) x (im— 1) matrix with the elements a;:

. i c
ail('i.;) = Z[a%: (nx.i - x;x.x nx.loL) + 6:‘1 "g.lo(:] (i’l =d4a,....m — l) (58)
[ Sy S

If at time 7 = 0 the composition of the mobile phase is uniform along the column,
then

5z 1=0) =% (59
and if only infinitesimal perturbations of the concentration are considered, the matrix

A can be taken as constant, its elements being a,(32). Under the same assumptions,
also the molar volurae of the mobile phase is constant:

t,(5q) = 0, (x9) = ¢} (60)

In this case the local time, q, is proportiohal to the v;)lume having flowed through the
cross-section, as follows from egn. 49:

z
e gz.) = fvdr (1)
3 S : o
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Let us now ook for solutions of the system of eqns. 57 having the following
particular form:

X(z.9) =, (iz—q@) X} (62)

where f; is any differentiable function and ¥, is a constant vector. The calculation of
partial derivatives of eqn. 62 is straightforward and gives

Lu _ sz_{i

éq cqg "

X, of. _. . of, .

—:.—“"’;T:‘ia,,: _/--._“-?,: ) (63)
éz = éq

Introduction of eqn. 63 into the differential system 57 transforms it to an eigenvalue
problem:

A = 1% (64)

An expression having the form of egn. 64 is a solution of the differential problem if £
is an eigenvalue of the matrix A and ¥, is the corresponding eigenvector. If the matrix
A has (m~1) distinct eigenvalues (4,. ..., 4,,_,). the set of the corresponding eigen-
vectors (X3. ..., X ') is a basis of the vector space of the X,. In this case the
general solution of the differential problem may be written as a linear combination

of the eigenvectors:
m—1 . N
Xg) = Y fl4z—9 %, (63)

The coeflicients f; have to be determined from the boundary condition at the inlet of
the column:

5(:=0,9) = Hg) (66)

where ¥(g) describes the composition of the mixture entering in the column as a
function of the “local time™, g(z=0,¢).
The form of eqn. 65 shows that, for any differentiable boundary condition (eqn.
66), the general solution is a superposition of m — 1 concentration signals, each travel-
ling without deformation along the column with constant velocity (the inverse of the
eigenvalue} with respect to the local time. Taking into consideration egn. 61, the
corresponding reteation volumes are given as
Vi =94 L (i=a,...,m—1) 67
¢ us now examine the question of the existence of the ¢igenvalues of the
matrix A4, restricting the discussion to the case of a binary mixture as eluent, but
allowing any number of solutes. Eet @ and m be the components of the eluent. For
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=

each other substance in the system, the initial value of the molar fraction is zero by
hypothesis:

-"2.5 = -Yg.c = ... = -Vg.m—x =0 (68)

It is evident that if a substance has zero concentration in the mobile phase, its molar
capacity in the column also disappears:

(%) = 0 (69)

if x,; = 0, whatever is the value of the other components of the vector X,. As a
consequence the following rule is valid:

in; .
( )?; =0 70

il

ifi=0.c.....m—1and # i. The matrix 4 thus takes a triangular form, all elements
a, with / < i being zero; in fact. by eqn. 58 we have fori = b, ..., m-1 and [ < i:

c
[ = Z[a (”x,i — Xy nx,'lol)]:\:o =0 (71)
”

Cx. ¢

The cigenvalues of a triangular matrix are the diagonal elements. If these
eigenvalues are all distinct and positive. the signal observed at the outlet of the
column will be a superposition of 71— 1 signals characterized by the retention volumes
given by eqn. 67:

c
4 — (1] (1]
R — v;x [(- N (nx.i xp.i nx.!o())—- : n:.lot]
C-\p.i Xo

Enz.i o (Enx.to!) :l >
s - Xpil = (i=a,....m-—1) 72
[(C-‘p.i)x*; N\ Exi )0 (72)

It should be noted that, depending on the boundary condition, some of these concen-
tration signals may have a zero amplitude. It is easy to show that eqn. 72 (identical
to eqgn. 8) is also valid in an eluent composed of more than two components if / is a
solute (i.e.. if X2, = 0).

—_ 0
=T,

Retention equations for liquid—solid chromatography in terms of different units; trans-
formations of eqn. 31

Mass language: m-p-f1 (mass. mass fraction, mass per unit surface area). For a
solute su (x2,, = O or equivalently, p2_, = 0), eqn. 31 reduces to

e aﬁ,ui
Vasa = Voex + S-2£ —C")T_o A (73)
i -]

R.su = ~
M\ Cx,




[
W

ADSORPTION FROM LIQUID MIXTURES AND LC

By definition p, ; = Mx, /M, so for a solute

(%1)_0 = MM (74)
Y#

On the other hand. I1,, ¢ is identically zero if p, ,, = 0, and thus

(Glfsulc_‘:)_.o =0 (75)
ox,, )%,

for I # su. Consequently, for solutes eqn. 76 holds true:
En>ur X
Vasu = Vucx + S &) (Tﬁ)—o (76)
Py

For the concentration peak, the derivation is restricted to the case of a binary mixture
(A and B) as eluent. Eqn. 31 gives for the retention volume

v,

rdarl x%, fdnn
_ V S i Cilacx _TtmA —"BCX
R,cc cx + [M_\ d XA .\‘g_A A’!B d XA xg.A (77)

Differentiation of the expression p, , = M,X, /(M X, \ + Mpgx, g) gives

dpu A) o\2
—B= =M M (M)
(dtm o = MaMu(MD) (78)

Introduction of egn. 78 into eqn. 77 gives, after rearrangement,

af. afl,.. o«
v — L s [( .-\.cs.) — 0 (___ﬂ) ] (79)
R, wex “IN dpua Je2a THP\ dpaa Pl

In particular. in the convention mNA ({1, ... = 0) eqn. 79 simplifies to give

dl .~
Veee = Vimna + Su*’(ﬂ) (80)
R. 2 mNA “\ " dp, A p2 .

Volume language: v-@-¥ (volume, volume fraction, volume per unit surface
area). For a solute su (xJ., = 0 or equivalently @5, = 0), eqn. 31 gives
. L’g ¢ 'f’su.,cx ¢ [ 2% —

VR.su - VmCX +S[L_gu ( axn'w _-to su'C\ (&5 ) an i'ﬂ
:: ¥ cx
Ve (——)i, (81)
L CXyow /X
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as I, cx (X2) = 0. By definition @, ; = ; X, /U, (v; is for the partial molar volume
and v, for the mean molar volume of thc eluent), and so for a solute

CO,w\ _ . 0 y

(cr,, ~u)T'2 = Belta 82)

=)

Considering that ¥, ¢ is identically zero if ¢, =

cWucx 3

— -0 = 4] 83

( C(.Dp..l )(pg ( )
for [ # su. Eqn. 81 can now be written as

V.

Rsu —

, ¢ suicx
Vo CQ_S“L-_)_. (84)
R WY [

The derivation for the concentration peak is restricted to a binary system. Eqn.
31 can be written in the following form:

drF, e ar..
Free = Vieex + S[‘u‘pﬂ(’ —'.A'c_x)\.o + 3 -‘-'n..-\( 22 o -l (85)
X2\

d'\l-kf\ dxu.B XAl

I et us now recall two basic properties of the molar volumes in a binary mixture:

d -
e (86)
dx, s
dey d*z,
dx, 5 = Yes” dx- &7

and that the volume fraction ¢, , is given by
(p;,.-\ = 'Y;z-.-\ r.—\/tp (88)

By using eqns. 86 and 87 the derivative of the volume fraction with respect to the
molar fraction can now be expressed as follows:

d 3 ; a2 v

@Ppa _ ta s , XpaAXuB .3

& = L - d: 2 (89)
Xp A Y Uy XA

As by definition ¥, cx = 84 [ a.cx» the first term of the coefficient of 5 in eqn. 85 can
be written as

af . ey _ Uu¥es (¥ a.cx -d‘P;:.A do, ) (90)

r,X, - F
a¥Xp.B " " Acx”
dx, ra do, . dx, . ax, A



ADSORPTION FROM LIQUID MIXTURES AND LC a7

Using eqns. 86, 87 and 88, the following expression is obtained after tedious manipu-
lations:

dr, cx d¥, cx Dun
£, X, p- == = l4a)-—+= — a-—£=. 9 91
u XuB dx, . L ) do, .- O, n ACX ©n
where the parameter z is
d’r
& = (X, aNp 8 U/UaAlR) = (92)

3
dx, o

The value of a remains unchanged if the subscripts A and B are interchanged. For
reasons of symmetry a relation analogous to egn. 91 is valid for the second term of the
coefiicient of § in eqn. 85:

dar d¥y ox
Yeex _ @pa (1 +2)- 3 BCX 1_€9u-a

- TBer (93)
(pu.B (pu.B

Introduction of eqns. 91 and 93 into eqn. 85 gives the desired retention volume. Its
form becomes particularly simple if the tNA convention is chosen for the adsorption.
Considering eqn. 44, the expression for the retention volume becomes

) N dq’_x NA (d?,\fc\’-\ Pua — PuB )]
Foce = Fuona + S| —2 + Sl = ¥ N
& piENA [ do, a deo,a Pu.aPusn VERA 992,-\ o4

If the mixture is ideal (i.e., the molar volume is a linear function of x, ). the coef-
ficient z is zero (see eqn. 92), and eqn. 94 takes the simple form given in Table L.

SYMBOLS

Symbols

¢ (mol 171), concentration; d (g cm ™3} = 1/, density; I' (mol m™~3), surface
concentration; ¢ (—) = pt/f, = xr/v,, volume fraction; k (—) = c,/c,, partition
coefficient; ¥ (mol m™2 or g m~2 or ml m~2), peak propagation resitivity; L (cm),
column length; m (g), mass of eluent or solute; m (—), number of components in a
fluid mixture; M (g mol ~!), molar mass; # (mol), number of moles of eluent or solute;
N (-): number of components in the liquid mixture (in particular, eluent); v (ml mol 1
or ml g=! or no units), constant in eqn. 45; p (—), mass fraction; P (bar), mean
pressure; IT (g m™2), surface concentration; ¥ (ml m~2 ~ um), surface concentra-
tion; S (m?). surface area of a solid; 7 (min), time; T (°K). temperature; r (m} mol™1).
{partial) molar volume; & (ml g~?!), (partial) specific volume; ¥ (ml). volume; ¥ (ml
min '), flow-rate; ¥, (ml), retention volume; ¥y (ml), net retention volume; Vg (pd
m "~ 2), surface Specific retention volume; V, (ml g™ 1), specific retention volume; w (g),
mass referring to the stationary phase; x (—), molar fraction; = (cm), distance in the
column.

Subscripts
A, .... 3, ..., N, components of the eluent; cc, peak due to concentration per-
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turbation; su, solute; 7, either J, cc or su; c. column; §, bulk of the liquid; CX, con-
vention X (GLC, model for gas-liquid chromatography or one of the conventions
JIA| #NA, mNA and tNA); k, column capacity (total of a component in the column
iranyoorted by the mobile phase); u. mobile phase; o. [two meanings]. (i) of the sta-
tionary phase and (ii) material adsorbed or absorbed in the stationary phase; S, unit
surface area; tot, sum over all components present; z. total amount in (or of) a mix-
iure before adsorption.

Superscripts
0. before the beginning of the chromatographic process; (id), ideal dilution.
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